Math, asked by CherryJain14, 1 month ago

Please solve both the questions with full solution​

Attachments:

Answers

Answered by agjb2008
0

Answer:

Step-by-step explanation:

for question 3, just substitute  the values

q4 - by indices rule

(k+1) (3k-2)= k+1+3k-2 = 4k-1

4k - 1 is -9

therefore k = -2

pl mark me as brainliest

Answered by AestheticSky
51

\underbrace{ \large \sf Question \: 3 :  - }

  • Verify a× (b + c) = a × b + a × c, by taking :-

  • a = 3/4
  • b = -5/6
  • c = 2/3

\underbrace{ \large \sf Solution \: 3 :  - }

  • Simply Substitute the given values in both LHS as well as RHS

\sf \maltese\underline{LHS :- }

 \\ \: \: \:  \: \: \: \:  \: \: \: \: : \implies \sf a \times (b + c) \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf  \dfrac{3}{4}  \bigg( \dfrac{ - 5}{6}  +  \dfrac{2}{3}  \bigg) \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \:  : \implies \sf  \frac{3}{4}  \bigg( \frac{ - 5 + 4}{6}  \bigg) \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf  \dfrac{ \cancel{3}}{4}  \times  \dfrac{ - 1}{ \cancel{6} ^{2} }  \\

 \\  \: \: \:  \: \: \: \:  \: \: \: \: : \implies \boxed{ \frak{ \frac{ - 1}{8} }} \bigstar \\

\sf \maltese\underline{RHS :- }

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf a  \times b + a \times c \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf   \bigg(\dfrac{ \cancel{3}}{4}  \times  \frac{ - 5}{ \cancel{6} ^{2} }  \bigg) +  \bigg( \frac{ \cancel{3}}{ \cancel{4} ^{2} }  \times  \frac{ \cancel{2}}{ \cancel{3}}  \bigg) \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf   \frac{ - 5}{8}  +  \frac{1}{2}  \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \:  : \implies \sf  \frac{ - 5 + 4}{8}  \\

 \\\: \: \:  \: \: \: \:  \: \: \: \: :  \implies  \boxed{ \frak{ \frac{ - 1}{8} }} \bigstar \\

LHS = RHS

hence, verified !!

______________________

\\\underbrace{ \large \sf Question \: 4 :  - }\\

  • Find the value of k so that (-2)^(k+1) × (-2)^(3k-2) = (-2)^(-9)

\\\underbrace{ \large \sf Solution \: 4 :  - }\\

 \\   : \implies \sf  {( - 2)}^{k + 1}  \times  {( - 2)}^{3k - 2}  =  {( - 2)}^{ - 9}  \\

We know that :-

 \\ \: \: \:  \: \: \: \:  \: \: \: \: \leadsto \large \underline{ \boxed{ \pink{ \frak{ {a}^{m} +  {a}^{n}  =  {a}^{m + n}  }}}} \bigstar \\

Applying the same concept in our equation :-

   \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies \sf  {( - 2)}^{k + 1 + 3k - 2}  =  {( - 2)}^{ - 9}  \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \::   \implies \sf   {( - 2)}^{4k - 1}  =  {( - 2)}^{ - 9}  \\

Since, the bases are same on both LHS as well as RHS, the exponents can be equated as follows :-

 \\ \: \: \:  \: \: \: \:  \: \: \: \:  : \implies \sf 4k - 1 =  - 9 \\

 \\  \: \: \:  \: \: \: \:  \: \: \: \::  \implies \sf 4k =  - 9 + 1 \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \:  : \implies \sf 4k =  - 8 \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \:  : \implies \sf k =  \dfrac{ - 8}{4}  \\

 \\ \: \: \:  \: \: \: \:  \: \: \: \: :  \implies  \boxed{\sf{ k = - 2} } \bigstar \\

_______________________

hope it's helpful!

Similar questions