please solve but fast question no 45 a and b also
Attachments:
Answers
Answered by
3
Here is your solution :
( a ).
= 4a² - 9b² - ( 2a - 3b )
= ( 2a )² - ( 3b )² - ( 2a - 3b )
Using identity,
=> ( a² - b² ) = ( a + b ) ( a - b )
= [ ( 2a + 3b ) ( 2a - 3b ) ] - ( 2a - 3b )
Taking out ( 2a - 3b ) as common,
= ( 2a - 3b ) ( 2a + 3b - 1 )
( b ).
= a² + b² - 2( ab - ac + bc )
Using identity,
=> ( a² + b² ) = [ ( a - b )² + 2ab ]
= ( a - b )² + 2ab - 2( ab - ac + bc )
= ( a - b )² + 2ab - 2ab + 2ac - 2bc
= ( a - b )² + 2ac - 2bc
= ( a - b )² + 2c ( a - b )
Taking out ( a - b ) as common,
= ( a - b ) ( a - b + 2c )
Proof of identities used in this question.
( i )
=> ( a² - b² ) = ( a + b ) ( a - b )
L.H.S = ( a² - b² )
R.H.S = ( a + b ) ( a - b )
= a( a - b ) + b( a - b )
= a² - ab + ab - b²
= a² - b² ( L.H.S )
Proved !!
( ii )
=> ( a² + b² ) = ( a - b )² + 2ab
Using identity,
=> ( a - b )² = a² + b² - 2ab
Adding ( 2ab ) to both sides,
=> ( a - b )² + 2ab = a² + b² - 2ab + 2ab
=> ( a - b )² + 2ab = a² + b²
=> -a² - b² = - ( a - b )² - 2ab
=> - ( a² + b² ) = - [ ( a - b )² + 2ab ]
•°• ( a² + b² ) = ( a - b )² + 2ab
Proof of identity used in proving this identity.
=> ( a - b )² = ( a² + b² - 2ab )
Now,
= ( a - b )² ( L.H.S )
= ( a - b ) ( a - b )
= a( a - b ) -b ( a - b )
= a² - ab - ab + b²
= a² - 2ab + b²
= a² + b² - 2ab ( R.H.S )
Proved !!
( a ).
= 4a² - 9b² - ( 2a - 3b )
= ( 2a )² - ( 3b )² - ( 2a - 3b )
Using identity,
=> ( a² - b² ) = ( a + b ) ( a - b )
= [ ( 2a + 3b ) ( 2a - 3b ) ] - ( 2a - 3b )
Taking out ( 2a - 3b ) as common,
= ( 2a - 3b ) ( 2a + 3b - 1 )
( b ).
= a² + b² - 2( ab - ac + bc )
Using identity,
=> ( a² + b² ) = [ ( a - b )² + 2ab ]
= ( a - b )² + 2ab - 2( ab - ac + bc )
= ( a - b )² + 2ab - 2ab + 2ac - 2bc
= ( a - b )² + 2ac - 2bc
= ( a - b )² + 2c ( a - b )
Taking out ( a - b ) as common,
= ( a - b ) ( a - b + 2c )
Proof of identities used in this question.
( i )
=> ( a² - b² ) = ( a + b ) ( a - b )
L.H.S = ( a² - b² )
R.H.S = ( a + b ) ( a - b )
= a( a - b ) + b( a - b )
= a² - ab + ab - b²
= a² - b² ( L.H.S )
Proved !!
( ii )
=> ( a² + b² ) = ( a - b )² + 2ab
Using identity,
=> ( a - b )² = a² + b² - 2ab
Adding ( 2ab ) to both sides,
=> ( a - b )² + 2ab = a² + b² - 2ab + 2ab
=> ( a - b )² + 2ab = a² + b²
=> -a² - b² = - ( a - b )² - 2ab
=> - ( a² + b² ) = - [ ( a - b )² + 2ab ]
•°• ( a² + b² ) = ( a - b )² + 2ab
Proof of identity used in proving this identity.
=> ( a - b )² = ( a² + b² - 2ab )
Now,
= ( a - b )² ( L.H.S )
= ( a - b ) ( a - b )
= a( a - b ) -b ( a - b )
= a² - ab - ab + b²
= a² - 2ab + b²
= a² + b² - 2ab ( R.H.S )
Proved !!
Similar questions