Math, asked by iamtherealvismay, 1 month ago

please solve fast with full method​

Attachments:

Answers

Answered by bishnupriyabishnupri
0

Answer:

answer

Step-by-step explanation:

answer is = -2,-1/2

Answered by mathdude500
1

\large\underline{\sf{Given \:Question - }}

If

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

then x belongs to

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

The breaking points are - 3, - 1/2 and 2

So,

Following cases arises

\rm :\longmapsto\:1. \:  \: x  \leqslant   - 3

\rm :\longmapsto\:2. \:  \:  - 3 < x  <  - \dfrac{1}{2}

\rm :\longmapsto\:3. \:  \:    - \dfrac{1}{2}  \leqslant x < 2

\rm :\longmapsto\:4. \:  \: x \geqslant 2

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ &\sf{ \:  \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Consider,

\rm :\longmapsto\:When \: x \leqslant  - 3

The inequality

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

reduce to

\rm :\longmapsto\:  - (2x + 1)  - (x - 2) -  (x + 3) < 8

\rm :\longmapsto\:  - 2x  -  1 - x  +  2 -  x  - 3< 8

\rm :\longmapsto\:  - 4x  -  2 < 8

\rm :\longmapsto\:  - 4x < 8 + 2

\rm :\longmapsto\:  - 4x < 10

\bf\implies \:x >  - 2.5

Hence, there is no solution

\bf :\longmapsto\:When\:  \:  - 3 < x    <    -  \:  \: \dfrac{1}{2}

The inequality

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

reduce to

\rm :\longmapsto\:  - (2x + 1)  - (x - 2)+  x + 3 < 8

\rm :\longmapsto\:  - 2x  -  1  - x + 2+  x + 3 < 8

\rm :\longmapsto\:  - 2x  + 4 < 8

\rm :\longmapsto\:  - 2x  < 8 - 4

\rm :\longmapsto\:  - 2x  < 4

\rm :\longmapsto\: x  >  - 2

\bf\implies \:x \:  \in \: ( - 2, - \dfrac{1}{2}\bigg)

Now, Consider

\bf :\longmapsto\:When\:  \:  - \dfrac{1}{2}   \leqslant  x < 2

The inequality

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

reduce to

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

reduce to

\rm :\longmapsto\: 2x + 1  - (x - 2) +  x + 3 < 8

\rm :\longmapsto\: 3x + 4  - x + 2  < 8

\rm :\longmapsto\: 2x + 6    < 8

\rm :\longmapsto\: 2x   < 8 - 6

\rm :\longmapsto\: 2x   < 2

\bf\implies \:x < 1

\bf\implies \:x \:  \in \: \bigg( -  \: \dfrac{1}{2},1\bigg)

Now, Consider

\rm :\longmapsto\:When \: x \geqslant  2

The inequality

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

reduce to

\rm :\longmapsto\: 2x + 1+  x - 2 +  x + 3< 8

\rm :\longmapsto\: 4x + 2< 8

\rm :\longmapsto\: 4x < 8 - 2

\rm :\longmapsto\: 4x < 6

\bf\implies \:x < \dfrac{3}{2}

Hence, there is no solution

So, The solution of

\rm :\longmapsto\: |2x + 1| +  |x - 2| +  |x + 3| < 8

is

\bf\implies \:x \:  \in \: \bigg( - 2, - \dfrac{1}{2}\bigg) \:  \cup \: \bigg( - \dfrac{1}{2},1\bigg)

or

\bf\implies \:x \:  \in \: \bigg( - 2,1\bigg) \:   -  \: \bigg \{ - \dfrac{1}{2}\bigg \}

Similar questions