Math, asked by sjskoskrbdndkdk, 1 month ago

please solve for me do correct please its class 9th

The roots of ax²+bx+c=0 are differ by unity,then b²-a²=​

fast please


now

Answers

Answered by saptarshighosh52
1

Answer:

b2-a2 = 1 + 4b

Step-by-step explanation:

x2 - ax + b = 0 Let α,β be the roots of quadratic. So α + β = a and α,β  = b

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

~ The roots of ax²+bx+c=0 are differ by unity

Let assume that,

\rm :\longmapsto\: \alpha, \beta  \: be \: the \: roots \: of \:  {ax}^{2} + bx + c = 0

So,

\bf\implies \: \alpha  -  \beta  = 1

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha + \beta = \dfrac{-b}{a}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha \beta = \dfrac{c}{a}

Now, given that,

\bf\implies \: \alpha  -  \beta  = 1

On squaring both sides, we get

\bf\implies \: (\alpha  -  \beta)^{2}   = 1

can be rewritten as

\bf\implies \: (\alpha  +  \beta)^{2} - 4 \alpha  \beta    = 1

\rm :\longmapsto\: {\bigg[\dfrac{ - b}{a} \bigg]}^{2} - 4 \times \bigg[\dfrac{c}{a} \bigg] = 1

\rm :\longmapsto\:\dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{4c}{a}  = 1

\rm :\longmapsto\:\dfrac{ {b}^{2} - 4ac }{ {a}^{2} }  = 1

\rm :\longmapsto\: {b}^{2}  - 4ac =  {a}^{2}

\bf\implies \: {b}^{2} -  {a}^{2} = 4ac

Additional Information :-

For Cubic Polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions