Math, asked by ritik555rk, 10 months ago

Please solve in detail

Attachments:

Answers

Answered by ihrishi
0

Answer:

sin \theta + cos \theta =  \sqrt{2} \\  \therefore \:  sin \theta =  \sqrt{2} - cos \theta \\ squaring \: both \: sides \\  {sin}^{2} \theta =  {(\sqrt{2} - cos \theta )}^{2}  \\  \therefore \:  {sin}^{2} \theta =2 +  {cos}^{2}  \theta - 2 \sqrt{2} cos \theta \\ \therefore \: 1 -  {cos}^{2} \theta =2 +  {cos}^{2}  \theta - 2 \sqrt{2} cos \theta \\  \therefore \:0 = 2 +  {cos}^{2}  \theta - 2 \sqrt{2} cos \theta - 1 + {cos}^{2}  \theta \\ \therefore \:0 = 2{cos}^{2}  \theta - 2 \sqrt{2}  cos \theta + 1 \\ or \\  \:  \:  \:  \:  \:  2{cos}^{2}  \theta - 2 \sqrt{2}  cos \theta + 1 = 0 \\ \therefore  \:   2{cos}^{2}  \theta -  \sqrt{2}  cos \theta -  \sqrt{2}  cos \theta+ 1 = 0 \\  \sqrt{2} cos \theta( \sqrt{2} cos \theta - 1) - 1( \sqrt{2} cos \theta - 1) = 0 \\ ( \sqrt{2} cos \theta - 1) ( \sqrt{2} cos \theta - 1)= 0  \\  {( \sqrt{2} cos \theta - 1)}^{2}  = 0 \\ taking \: square \: root \: on \: both \: sides \\ \sqrt{2} cos \theta - 1 = 0 \\  \implies \: \sqrt{2} cos \theta  = 1 \\ \implies \: cos \theta  =  \frac{1}{\sqrt{2} }  \\ \implies \: cos \theta  =  cos \:  45 \degree \\ \implies \huge \fbox{ \theta  =   45 \degree } \\ \implies \huge \fbox{tan \theta  = tan \: 45 \degree   = 1}

Similar questions