Physics, asked by ranitadas2510, 1 year ago


please solve it.......​

Attachments:

Answers

Answered by vidhi20oct
1

Answer:

ATQ<

KE of man = 1/2mv^2

KE of boy = 1/2[ 1/2 * m/2 * v1^2]

on equating ,

v1^2  = 4 v^2

v1= 2v.......................(1)

on speeding up by 1 m/s,

KE of man = 1/2 * m * ( v+1)^2

KE of boy = 1/2 * m./2 * v1^2

on equating ,

2(v+1)^2 = v1^2

\sqrt{2} (v+1) = v1.....................(2)

solve n get ur desired ans

Answered by BrainlyConqueror0901
4

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Original\:speed\:of\:man=(\sqrt{2}+1)\:m/s}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies K.E \: of \: man =  \frac{1}{2}  K.E \: of \: boy \\  \\  \:  \underline \bold{To \: Find : } \\  \implies Original \: speed \: of \: man = ?

• According to given question :

 \bold{Let \: Speed \:of \: man =  v_{1}} \\ \:  \:  \:  \:  \:  \:  \:   \bold{Speed \: of \: boy =  v_{2}} \\  \\  \bold{Mass \: of \: man = m \: kg} \\  \bold{Mass \: of \: boy = 0.5m \: kg} \\  \\ \bold{At \: original \: speed \: of \: man} \\   \implies K.E \: of \: man =  \frac{1}{2} K.E \: of \: boy \\  \\  \implies  \frac{1}{2}{m v_{1} }^{2}   =  \frac{1}{2}  \times  \frac{1}{2}  {mv_{2}}^{2}  \\  \\  \implies   \frac{1}{2} {m v_{1} }^{2}  =  \frac{1}{4} {m v_{2} }^{2}  \\  \\  \implies  v_{1} =  \frac{ v_{2}}{2}  -  -  -  -  - (1) \\  \\  \bold{At \: man \: speed \: increase \: by \: 1 \: ms} \\  \implies K.E \: of \: man =  \frac{1}{2} K.E\: of \: boy \\  \\   \implies  \frac{1}{2}  {m( v_{1} + 1) }^{2}  =  \frac{1}{2}  \frac{m (v_{2})^{2}  }{2}  \\  \\  \implies  \frac{1}{ \cancel2}  { \cancel{m}( v_{1}  + 1)}^{2}  \times  \frac{ \cancel{2} \times 2}{ \cancel{m}}  =  (v_{2})^{2}  \\  \\  \implies ( v_{1} + 1)^{2}  \times 2 =({ 2 v_{1} })^{2}  \\  \\  \implies  ({ v_{1} + 1 })^{2}  = 2 {( v_{1}})^{2}  \\  \\  \implies  v_{1} + 1 =  \sqrt{2 {( v_{1} })^{2} }  \\  \\  \implies v_{1} + 1  =  \sqrt{2} v_{1}  \\  \\  \implies v_{1} ( \sqrt{2 } - 1 ) = 1 \\  \\  \implies v_{1}  =  \frac{1}{ \sqrt{2}  - 1}  \\  \\    \bold{\implies v_{1}  = ( \sqrt{2}  + 1) \: m/s}

Similar questions