Math, asked by lisa1293, 10 months ago

Please solve it........ ​

Attachments:

Answers

Answered by Anonymous
43

Answer:

here your answer...................

Attachments:
Answered by Anonymous
178

AnswEr :

1.) \: \dfrac{ \tan( \theta) }{1 -  \cot(\theta) }  +  \dfrac{ \cot(\theta) }{1 -  \tan(\theta) } = 1 +  \tan(\theta) +  \cot(\theta)

\implies\dfrac{ \tan( \theta) }{1 -  \cot(\theta) }  +  \dfrac{ \cot(\theta) }{1 -  \tan(\theta) }

  • changing every term into tan (θ)

\implies\dfrac{ \tan( \theta) }{1 -   \frac{1}{\tan(\theta)} }  +  \dfrac{  \frac{1}{\tan(\theta)} }{1 -  \tan(\theta) }

\implies\dfrac{ \tan( \theta) }{ \frac{ \tan(\theta) -  1}{\tan(\theta)} }  +  \dfrac{  \frac{1}{\tan(\theta)} }{1 -  \tan(\theta) }

\implies\dfrac{ \tan^{2} ( \theta) }{ \tan(\theta) -  1} + \dfrac{1}{ \tan(\theta)( 1 - \tan(\theta)) }

\implies\dfrac{ \tan^{2} ( \theta) }{ \tan(\theta) -  1}  -  \dfrac{1}{ \tan(\theta)(\tan(\theta)  - 1)}

\implies \dfrac{1}{\tan(\theta) -  1} \bigg( \tan^{2} ( \theta) - \dfrac{1}{ \tan(\theta)} \bigg)

\implies \dfrac{1}{\tan(\theta) -  1} \bigg( \dfrac{\tan^{3} ( \theta) - 1}{ \tan(\theta)} \bigg)

\implies \dfrac{1}{\tan(\theta) -  1} \bigg( \dfrac{\tan^{3} ( \theta) -  {1}^{3} }{ \tan(\theta)} \bigg)

  • (a³ - b³) = (a - b)(a² + ab + b²)

\implies \dfrac{1}{ \cancel{\tan(\theta) -  1}}\times \dfrac{ \cancel{(\tan(\theta) -  1)}(\tan^{2} ( \theta)  +  \tan( \theta) + 1) }{ \tan(\theta)}

\implies \dfrac{(\tan^{2} ( \theta)  +  \tan( \theta) + 1) }{ \tan(\theta)}

\implies \cancel\dfrac{\tan^{2}}{ \tan(\theta)} + \cancel\dfrac{\tan(\theta)}{\tan(\theta)} + \dfrac{1}{\tan(\theta)}

\implies \tan( \theta)  + 1 +  \cot(\theta)

\implies\boxed{1 + \tan( \theta)+\cot(\theta)}

━━━━━━━━━━━━━━━━━━━━━━━━

2.) \:  \dfrac{1}{1 +  \sin(A) }  +  \dfrac{1}{1 -  \sin(A) } = 2 \sec^{2} (A)

\implies\dfrac{1}{1 +  \sin(A) }  +  \dfrac{1}{1 -  \sin(A) }

\implies\dfrac{1-\cancel{\sin(A)}+ 1 +  \cancel{\sin(A)} }{(1 + \sin(A))(1  -   \sin(A))}

\implies\dfrac{1 + 1}{1  -  \sin^{2} (A)}

\implies\dfrac{2}{ \cos^{2} (A)}

\implies\boxed{2\sec^{2} (A)}

Similar questions