please solve it. .............
(22x+34y+55xy)×(34x+12y+87xy)
Answers
Answer:
Step-by-step explanation:
x (x (y (4785 y + 3784) + 748) + y (3618 y + 1420)) + 408 y^2
Open code
748 x^2 + y ((x (4785 x + 3618) + 408) y + x (3784 x + 1420))
Open code
(11 x (5 y + 2) + 34 y) (x (87 y + 34) + 12 y)
Open code
Expanded form:Step-by-step solution
4785 x^2 y^2 + 3784 x^2 y + 748 x^2 + 3618 x y^2 + 1420 x y + 408 y^2
Alternate form assuming x and y are positive:
11 x^2 (435 y^2 + 344 y + 68) + 2 x y (1809 y + 710) + 408 y^2
Open code
Polynomial discriminant:
Δ_x = (12 y (55 y + 22) - 34 y (87 y + 34))^2
Open code
Properties as a function:Domain:
R^2
Open code
Range:
R (all real numbers)
Open code
Partial derivatives:Step-by-step solution
d/(dx)((55 y x + 22 x + 34 y) (87 y x + 34 x + 12 y)) = 22 x (435 y^2 + 344 y + 68) + 2 y (1809 y + 710)
Open code
d/(dy)((55 y x + 22 x + 34 y) (87 y x + 34 x + 12 y)) = 22 x^2 (435 y + 172) + 4 x (1809 y + 355) + 816 y
Open code
Indefinite integral:Step-by-step solution
integral(22 x + 34 y + 55 x y) (34 x + 12 y + 87 x y) dx = 11/3 x^3 (5 y + 2) (87 y + 34) + x^2 y (1809 y + 710) + 408 x y^2 + constant
Open code
Local minimum:More digits
min{(22 x + 34 y + 55 x y) (34 x + 12 y + 87 x y)}≈-24.2985 at (x, y)≈(2.35674, -0.343039)
Open code
Definite integral over a square of edge length 2 L:
integral_(-L)^L integral_(-L)^L (22 x + 34 y + 55 x y) (34 x + 12 y + 87 x y) dy dx = 4/3 L^4 (1595 L^2 + 1156)