Math, asked by sophia05, 10 months ago

please solve it asap...with clear explanation
donot spam​

Attachments:

Answers

Answered by coronavirus1919
2

Ello user

Refer to the attachment for the solution.

Hope this helps.

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{a^{2}+b^{2}+c^{2}}{a+c-d}\:\:is\:a\:Integer}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Rational \: number =  \frac{ a\sqrt{2}  + b}{b \sqrt{2} + c }  \\  \\  \tt: \implies a,b,c \: are \: positive \: integer \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Which \: option \: is \: always \: integer = ?

• According to given question :

 \tt: \implies  \frac{a \sqrt{2}  + b}{b \sqrt{2}  + c}   \\  \\  \bold{As \: we \: know  \:that} \\  \tt: \implies  \frac{a \sqrt{2}  + b}{b \sqrt{2}  + c}  \times  \frac{b \sqrt{2}  - c }{b \sqrt{2} - c }  \\  \\  \tt:  \implies  \frac{2ab -  \sqrt{2}ac +  {b}^{2} \sqrt{2}  - bc }{2 {b}^{2}  -  {c}^{2} }  \\  \\  \tt:  \implies  \frac{2ab - bc +  \sqrt{2}( {b}^{2}  - ac) }{ {2b}^{2}  -  {c}^{2} }  \\  \\  \tt:  \implies  {b}^{2}  - ac =0 \\  \\  \tt:  \implies  {b}^{2}  = ac \\  \\  \tt \because Numbers \: are \: a,ar,a{r}^{2}  \\  \\   {\bold{For \: option \: A}} \\  \tt:  \implies  \frac{2 {a}^{2}  +  {b}^{2} }{2 {b}^{2}  + c}  \\  \\ \tt:  \implies \frac{2 {a}^{2}  + ac}{2ac +  {c}^{2} }

\tt:  \implies \frac{2a(a + c)}{2c(c + a)} \\  \\ \tt:  \implies \frac{a}{c}  \\  \\ \tt:  \implies  \frac{1}{ {r}^{2} }  \\  \\    \tt\green{ \therefore  \frac{1}{ {r}^{2} }  \: may \: or \: may \: not \: be \: integer} \\  \\  \bold{For \: option \:B} \\   \tt:  \implies  \frac{ {a}^{2} +  {b}^{2} -  {c}^{2}   }{a + b - c}  \\  \\  \tt:  \implies \frac{ {a}^{2}  +  {a}^{2}  {r}^{2}  -  {a}^{2} {r}^{4}  }{a + ar - a {r}^{2} }  \\  \\ \tt:  \implies  a(\frac{1 +  {r}^{2} +  {r}^{4}  }{1 + r -  {r}^{2} } ) \\ \\    \green{\tt\therefore  It \: is \: also \: may \: or \: may \: not \: be \: a \: integer}

\bold{For \: option \: C} \\ \tt:  \implies \frac{ {a}^{2}  + 2 {b}^{2} }{ {b}^{2} + 2 {c}^{2}  } \\  \\  \tt:  \implies \frac{ {a}^{2} + 2 {a}^{2}  {r}^{2}  }{ {a}^{2} {r}^{2}  +  {2a}^{2}  {r}^{4}  }  \\  \\ \tt:  \implies  \frac{ {a}^{2} (2 {r}^{2} + 1) }{ {a}^{2}  {r}^{2}( {2r}^{2}  + 1) }  \\  \\ \tt:  \implies \frac{1}{ {r}^{2} }  \\  \\  \tt\green{ \therefore  \frac{1}{ {r}^{2} }  \: may \: or \: may \: not \: be \: integer} \\  \\  \bold{For \: option \: D} \\ \tt  : \implies  \frac{ {a}^{2} +  {b}^{2}   +  {c}^{2} }{a + c - d}  \\  \\ \tt  : \implies \frac{ {a}^{2}(1 +  {r}^{2}  +  {r}^{4} )}{a( {r}^{2}  - r + 1)}  \\  \\ \tt  : \implies  a( {r}^{2}  + r + 1) \\  \\ \tt  : \implies a + b + c \\  \\   \tt\green{ \therefore a + b + c \: is \: a \: integer}

Similar questions