Math, asked by Anonymous, 8 months ago

please solve it ....

#don't spam

Attachments:

Answers

Answered by Cosmique
18

Given :

  • A and B are two complementary angles so, A + B = 90°

To find :

  • sin A sec B + cos A cosec B = ?

Solution :

Let,

x = sin A sec B + cos A cosec B

[ since,  A + B = 90° therefore, ]

→ x = sin A sec ( 90° - A ) + cos A cosec ( 90° - A )

[ since, sec θ = cosec ( 90° - θ ) and cosec ( 90° - θ ) = sec θ ]

→ x = sin A cosec A + cos A sec A

[ since, cosec θ = 1 / sin θ  and sec θ = 1 / cos θ ]

→ x = sin A × 1 / sin A  + cos A × 1 / cos A

→ x = 1 + 1

→ x = 2

therefore,

  • sin A sec B + cos A cosec B = 2

And, hence OPTION (c) 2 is correct.

More trigonometric ratios :

  • sin ( 90 - x ) = cos x
  • cos ( 90 - x ) = sin x
  • sec ( 90 - x ) = cosec x
  • cosec ( 90 - x ) = sec x
  • tan ( 90 - x ) = cot x
  • cot ( 90 - x ) = tan x

  • tan x = sin x / cos x
  • cot x = 1 / tan x = cos x / sin x
  • cosec x = 1 / sin x
  • sec x = 1 / cos x

  • sin²x + cos²x = 1
  • 1 + tan²x = sec²x
  • 1 + cot²x = cosec²x
Answered by mohit810275133
1

Step-by-step explanation:

ANSWER

Given A,B are complementary angles

⟹A+B=90

sinAcosB+cosAsinB−tanAtanB+sec

2

A−cot

2

B

=(sinAcosB+cosAsinB)−tanAtan(90

−A)+sec

2

A−cot

2

(90

−A)

=sin(A+B)−tanAcotA+sec

2

A−tan

2

A=sin90

−1+1=1

FOLLOW ME

Attachments:
Similar questions