Math, asked by ramesh12634, 7 hours ago

Please solve it, find value of x in equation

ln(x²+x) = ln(x²) + ln(x) ​

Answers

Answered by Anonymous
18

Given :  \sf\ln(x^2+x) = \ln(x^2) + \ln(x)

To find : Value of  \sf x in the given logarithmic equation.

Solution:-

We have,

  \sf \implies   \ln( {x}^{2}  + x)= \ln( {x}^{2} ) +  \ln(x)

  \sf \implies   \ln(x \cdot(x+ 1))= \ln( {x}^{2} ) +  \ln(x)

  \sf \implies   \ln(x) +  \ln(x+ 1)= \ln( {x}^{2} ) +  \ln(x)

  \sf \implies    \ln(x)  -  \ln(x)+  \ln(x+ 1)= \ln( {x}^{2} )

  \sf \implies \ln(x+ 1)= \ln( {x}^{2} )

Exponentiating both sides will give us:

  \sf \implies e^{\ln(x+ 1)}= e^{\ln( {x}^{2} ) }

Apply logarithmic property:

  •   \boxed{ \tt\purple {a^ {\log_ab} = b}}

  \sf \implies (x + 1)=  {x}^{2}

  \sf \implies 0=  {x}^{2}  - (x + 1)

  \sf \implies 0=  {x}^{2}  - x  - 1

Use quadratic formula to solve this equation.

\sf \implies x =  \dfrac{ - ( - 1) \pm  \sqrt{ {( - 1)}^{2} - 4(1)( - 1) } }{2(1)}

\sf \implies x =  \dfrac{ 1\pm  \sqrt{ 1  + 4 } }{2}

 \boxed{\bf \pink{ \implies x =  \dfrac{ 1\pm  \sqrt{5} }{2} }}

Hence this is the required solution of given equation.

Learn More:

  • \boxed{\log(a \cdot b) =  \log(a) +  \log(b)}

  • \boxed{ \log\left(  \dfrac{a}{b} \right) =  \log(a) -  \log(b)}

  •  \boxed{\ln(x) =  \log_e(x)}

  •  \boxed{\log_a(b) =  \dfrac{ \log_c(b)}{ \log_c(a)}}

  •  \boxed{a^{ \log_a(x)} = x}
Similar questions