Math, asked by sahubalabanta2p929dk, 1 year ago

please solve it questions 24........

Attachments:

Answers

Answered by Anonymous
2
hey mate here is ans
Attachments:

sahubalabanta2p929dk: heartily thnxx
Anonymous: wlcm always
Answered by TheCommando
6

Question:

 \dfrac{2tan\theta}{1+{tan}^{2}\theta} = 2sin\theta.cos\theta

Solution:

LHS =  \dfrac{2tan\theta}{1+{tan}^{2}\theta}

RHS = 2sin\theta.cos\theta

LHS =  \dfrac{2 tan\theta}{1+{tan}^{2}\theta}

 \dfrac{\dfrac{2sin\theta}{cos\theta}}{1+\dfrac{{sin}^{2}\theta}{{cos}^{2}\theta}}

 =\dfrac{\dfrac{2sin\theta}{cos\theta}}{\dfrac{{cos}^{2}\theta+{sin}^{2}\theta}{{cos}^{2}\theta}}

 = \dfrac{\dfrac{2sin\theta}{cos\theta}}{\dfrac{1}{{cos}^{2}\theta}}

 = \dfrac{2sin\theta}{cos\theta} \times \dfrac{{cos}^{2}\theta}{1}

 = 2sin\theta.cos\theta = RHS

Hence, proved.

Identities used

 tan\theta = \dfrac{sin\theta}{cos\theta}

 {sin}^{2}\theta + cos^{2}\theta = 1

Similar questions