please solve it sin (A+B) + cos (A-B)/ sin (A-B) + cos (A+B) = sec 2B + tan 2B
Answers
Answer:
here's the answer please follow me
Answer:
if it helps me please mark me as brainlist
Step-by-step explanation:
Sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B) [By identity] and
Cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
Adding these two, sin(A+B) + cos(A-B) =
=sin(A)*cos(B) + cos(A)*sin(B) + cos(A)*cos(B) + sin(A)*sin(B)
dividing throughout by cos(A)*cos(B),
sin(A+B) + cos(A-B) = cos(A)*cos(B)[tan(A) + tan(B) + 1 + tan(A)*tan(B)]
Grouping and factorizing,
sin(A+B) + cos(A-B) = cos(A)*cos(B)*{1+tan(A)}*{1 + tan(B)} ------(1)
Similarly proceeding and simplifying,
sin(A-B) + cos(A+B) = cos(A)*cos(B)*{1+tan(A)}*{1 - tan(B)} -------(2)
Dividing (1) by (2),
[sin(A+B)+cos(A-B)/sin(A-B)+cos(A+B)] = {1 + tan(B)}/{1 - tan(B)}
Multiplying numerator and denominator by {1 + tan(B)},
[sin(A+B)+cos(A-B)/sin(A-B)+cos(A+B)] = [1 + tan^2(B) + 2tan(B)]/{1 - tan^2(B)}
Multiplying both numerator and denominator by cos^2(B),
[sin(A+B)+cos(A-B)/sin(A-B)+cos(A+B)] =
=[cos^2(B) + sin^2(B) + 2sin(B)cos(B)]/{cos^2(B) - sin^2(B)}
==> [sin(A+B)+cos(A-B)/sin(A-B)+cos(A+B)] =
= [1 + sin(2B)]/cos(2B) = 1/cos(2B) + sin(2B)/cos(2B) = sec(2B) + tan(2B)
Thus it is proved that
[sin(A+B)+cos(A-B)/sin(A-B)+cos(A+B)] = sec(2B) + tan(2B)