Math, asked by saksham1276, 9 months ago

please solve it step by step ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

LHS =

 \frac{tan \: a}{sec \: a - 1} +  \frac{tan \: a}{sec \: a + 1}

 = tan \: a( \frac{sec \: a + 1 + sec \: a - 1}{ {sec}^{2} a - 1} )

 =  \frac{tan \: a \times 2sec \: a}{ {tan}^{2}a }

 = 2cosec \: a

= RHS

Hence, Proved...

Answered by Anonymous
4

Step-by-step explanation:

{  \sf{   \underline{  \red{  \underline{  \red{Given}}}}  :  - }}

  \displaystyle \bigstar \:  \:  \:  \: \boxed{ \underline{ \boxed{ \bold{ \frac{ \tan(a) }{ \sec(a - 1) }  +  \ \frac{ \tan(a) }{ \sec(a + 1) } }}}}

{  \sf{   \underline{  \red{  \underline{  \red{Solution}}}}  :  - }}

  \displaystyle \longrightarrow   {\sf{\rm{ \green{\frac{ \tan(a) }{ \sec(a - 1) }  +  \frac{ \tan(a) }{ \sec(a + 1) } }}}} \:  \:  \\  \\  \displaystyle \longrightarrow   {\sf{\rm{ \green{\frac{ \frac{ \sin(a) }{ \cos(a) }  }{  \frac{1}{ \cos(a) - 1}  }  +   \frac{  \frac{ \sin(a) }{ \cos(a) }  }{ \frac{1}{ \cos(a) + 1 } }}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \:  {\sf{\rm{ \green{ \frac{ \sin(a) }{1 -  \cos(a) }  +  \frac{ \sin(a) }{1 +  \cos(a)) }}}}} \\  \\  \displaystyle \longrightarrow \: {\sf{\rm{ \green{  \frac{ \sin(a)(1 +  \cos(a) +  \sin(a) (1 -  \cos(a)}{(1 +  \cos(a)(1 -  \cos(a) ) } }}}} \\  \\  \displaystyle \longrightarrow \: {\sf{\rm{ \green{ \frac{2 \sin(a) }{ { \sin }^{2}a } }}}} \\  \\  \displaystyle \longrightarrow \: {\sf{\rm{ \green{2 \cosec(a) }}}}

Similar questions