Math, asked by sg6671, 11 months ago

Please solve..
Method of differentiation

Attachments:

Answers

Answered by Anonymous
97

Question :

 \sf y =  \tan {}^{ - 1} ( \frac{4x}{1 + 5x {}^{2} } ) +  \tan {}^{ - 1} ( \frac{2 + 3x}{3 - 2x})

Find \sf\:\dfrac{dy}{dx}

Formula's used;

Inverse Trignometric Formulas:

1)  \sf\tan {}^{ - 1} x +  \tan {}^{ - 1} y =  \tan {}^{ - 1} ( \frac{x + y}{1 - xy} )

2) \sf \tan {}^{ - 1}x  -  \tan {}^{ - 1} y =  \tan {}^{ - 1} ( \frac{x - y}{1 + xy} )

• Differentiation Formula's :

1) \dfrac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

2) \dfrac{d(constant)}{dx}  = 0

3) \frac{d( \tan {}^{ - 1} x)}{dx}  =  \frac{1}{1 + x {}^{2} }

Solution :

 \sf y =  \tan {}^{ - 1} ( \frac{4x}{1 + 5x { }^{2} } ) +  \tan {}^{ - 1} ( \frac{2 + 3x}{3 - 2x})

 \sf y =  \tan {}^{ - 1} ( \frac{5x - x}{1 +( 5x )\times x} ) +  \tan {}^{ - 1} ( \frac{ \frac{2}{3} + x }{1 -  \frac{2}{3} \times x } )

Now expand the terms

 \sf y =  \tan{}^{ - 1}5x  -  \tan {}^{ - 1} x +  \tan {}^{ - 1} ( \frac{2}{3}) +  \tan {}^{ - 1}  x

 \sf y =  \tan {}^{ - 1} 5x  \cancel{ -  \tan {}^{ - 1} x} +  \tan {}^{ - 1} ( \frac{2}{3})  + \cancel{ \tan {}^{ - 1} x}

 \sf y =  \tan {}^{ - 1} 5x +  \tan {}^{ - 1} ( \frac{2}{3} )

Now Differentiate with respect to x

 \sf \implies \dfrac{dy}{dx}  =  \dfrac{d(  \tan {}^{ - 1} 5x)}{d(5x)} \times  \dfrac{d(5x)}{dx}

 \sf \implies \dfrac{dy}{dx}  =  \dfrac{1}{1 + 25x {}^{2} }   \times 5

It is the required solution

________________________

More About Differention:

•Chain Rule :

Let y=f(t) ,t = g(u) and u =m(x) ,then

 \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Similar questions