Math, asked by riji31, 11 months ago

please solve my question correctly correctly correctly.....
don't spam.....explanation must...​

Attachments:

Answers

Answered by Anonymous
33

Question :

cosec α+ cotα = a

so prove that,cosα = \dfrac{a {}^{2} - 1}{a {}^{2} + 1}

{\purple{\boxed{\large{\bold{Formula's}}}}}

Trignometric Formula's:

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1

Componendo and dividendo:

For any equal ratio

 \dfrac{a}{b}  =  \dfrac{c}{d}

we can apply Componendo and dividendo, which gives

 \dfrac{a + b}{a - b}  =  \dfrac{c + d}{c - d}

Solution :

Given : cosec α+ cotα = a

 \implies \frac{1}{ \sin \alpha  } +  \frac{  \cos \alpha   }{  \sin \alpha }  = a

 \implies \dfrac{1 +  \cos \alpha }{ \sin \alpha }  = a  \implies1 +  \cos \alpha  = a \times  \sin\alpha

Now squaring on both sides

 \implies(1 +  \cos \alpha ) {}^{2}   = a {}^{2}  (\sin {}^{2} \alpha )

 \implies(1 +  \cos\alpha ) {}^{2} = a {}^{2} (1 -  \cos {}^{2}  \alpha  )

 \implies(1 +  \cos \alpha) {}^{2} = a {}^{2} (1 +  \cos \alpha)(1 -  \cos \alpha)

 \implies \dfrac{(1 +  \cos\alpha )}{(1 -  \cos \alpha)  }  = a {}^{2}

Now use Componendo and dividendo

 \implies \dfrac{(1 +  \cos \alpha) + (1 -  \cos \alpha)  }{(1 +  \cos \alpha ) - (1 -  \cos \alpha  ) }  =  \dfrac{a {}^{2} + 1 }{a {}^{2}  - 1}

 \implies \dfrac{2}{2 \cos \alpha  }  =  \dfrac{a {}^{2}  + 1}{a {}^{2}  - 1}

 \implies \dfrac{1}{ \cos\alpha  }  =  \dfrac{a {}^{2}   + 1}{a {}^{2}  - 1 }

 \implies \sec \alpha  =  \dfrac{a {}^{2} - 1 }{a {}^{2} + 1 }

We know that secx =\dfrac{1}{cosx}

 \implies \cos \alpha  =  \dfrac{a {}^{2} - 1 }{a {}^{2}   + 1}

\huge{\bold{ Hence\: Proved}}

Similar questions