Math, asked by mggashif, 1 month ago

please solve please ​

Attachments:

Answers

Answered by 12thpáìn
2

Given

  • △ABC is similar to △DEF AL and DM are altitudes drawn in △ABC and △DEF respectively.

To prove:

  • \sf\dfrac{Area \:  of△ABC}{Area \:  of△DEF}=\dfrac{AL²}{DM²}

Proof:

In △ALB and △DEM

∠ALB=∠DME=90° (given)

∠B=∠E (∵△ABC is similar to △DEF)

∴∠BAL=∠EDM (Third angle)

∴ ∠ABL ~ ∠DEM (AA similarity criteria)

 \\\tt {\dfrac{AB}{ DE}= \dfrac{AL}{DM} ~~~~~----(1)}\\

Now, △ABC ~ △DEF ( SAS Similarity criteria)

\\{\sf\dfrac{Area \:  of△ABC}{Area \:  of△DEF}=\bigg(\dfrac{AB}{DE}\bigg)^{2}  = \bigg(\dfrac{ AB}{DE} \bigg) ^2= \bigg( \dfrac{ AL}{DM}\bigg)^2 }

\\{\sf\dfrac{Area \:  of△ABC}{Area \:  of△DEF}= \bigg( \dfrac{ AL}{DY}\bigg)^2 }_{_{_{~~~~~~~~~~~~\bf   Proved}}}

Attachments:
Similar questions