Math, asked by slal22180, 7 months ago

please solve q 6 plz.......​

Attachments:

Answers

Answered by InfiniteSoul
15

☆☞Diagram☜☆

⠀⠀⠀⠀

\setlength{\unitlength}{10mm}\begin{picture}{20.15}\thicklines\qbezier(1,1)(1,1)(7,1)\qbezier(7,1)(7,1)(6,4)\qbezier(6,4)(6,4)(1,1)\qbezier(6,4)(6,4)(4,1)\put(1,0.6){\large\sf {B}}\put(7,0.5){\large\sf C}\put(5.8,4.3){\large\sf{A}}\put(3.5,0.5){\large\sf{M}}\put(2.5,0.9){\large\sf{ll}}\put(5.5,0.9){\large\sf{ll}}

⠀⠀⠀⠀

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • AM is the median of triangle ABC

_______________________

\sf{\bold{\green{\underline{\underline{To\:Prove}}}}}

  • AB + BC + CA > 2AM

______________________

\sf{\bold{\green{\underline{\underline{proof}}}}}

⠀⠀⠀⠀

In triangle ABM

⠀⠀

AB + BM > AM ( sum of 2 sides of triangle is greater than the 3rd one ) ---- ( i )

⠀⠀⠀⠀

In triangle AMC

⠀⠀⠀⠀

AC + CM > AM ( Sum of 2 sides of triangle is greater than the 3rd one ) ---- ( ii )

⠀⠀⠀⠀

  • Adding eq ( i ) and ( ii )

⠀⠀⠀⠀

AB + BM + CM + AC > AM + AM

⠀⠀⠀⠀

AB + ( BM + CM ) + AC > 2AM ( BM + CM = BC )

⠀⠀⠀⠀

AB + BC + AC > 2AM

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀......Hence Proved

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
18

\displaystyle\large\underline{\sf\red{Given}}

✭ AM is a median of the triangle ABC

\displaystyle\large\underline{\sf\blue{To \ Prove}}

◈ AB+BC+CA > 2 AM

\displaystyle\large\underline{\sf\gray{Solution}}

Actually in simple words they are asking us to prove that the sum of all the sides of a triangle is greater than twice the Median!!

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

So here we may use the concept that,

»» Sum of any two sides of a triangle is greater than the third side

So on solving we see that,

In ABM

\displaystyle\sf AB + BM > AM \:\:\: -eq(1)

In AMC

\displaystyle\sf CA + MC > AM \:\:\: -eq(2)

Adding eq(1) & eq(2)

\displaystyle\sf AB+BM+CA+MC > AM+AM

\displaystyle\sf AB+BM+CA+MC > 2AM \:\:\: -eq(3)

From the diagram we may observe that,

\displaystyle\sf BC = BM+MC

Substituting this in eq(3) we get that,

›› \displaystyle\sf AB+CA+(BM+MC) > 2AM

›› \displaystyle\sf \pink{AB+BC+CA > 2AM}

\displaystyle\sf Hence \ Proved!!

\displaystyle\sf \star\: Diagram\:\star

\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(7,1)\qbezier(1,1)(1,1)(5,4)\qbezier(7,1)(7,1)(5,4)\qbezier(5,4)(5,4)(3.6,1)\put(0.8,0.5){\sf B}\put(3.4,0.5){\sf M}\put(7.1,0.5){\sf C}\put(5,4.3){\sf A}\end{picture}

━━━━━━━━━━━━━━━━━━

Similar questions