Math, asked by freefirelover420, 1 month ago

please solve q no 1 full

Attachments:

Answers

Answered by BlessedOne
9

Concept :

Quadratic equations are of the form :

⠀⠀⠀⌬ ax² + bx + c = 0

where , a ≠ 0 and a, b, c are real numbers.

So now for the given questions we would simplify each one of them and see whether it can be simplified in the general form of quadratic equation.

Question (i) :

⠀⠀⠀⌬ \sf\:x^{2}-2x=(-2) (3-x)

Solution :

\sf\:x^{2}-2x=(-2) (3-x)

\sf\implies\:x^{2}-2x=(-6+2x)

\sf\implies\:x^{2}-2x=-6+2x

\sf\implies\:x^{2}-2x-2x=-6

\sf\implies\:x^{2}-4x=-6

\sf\implies\:x^{2}-4x+-6=0

\sf\therefore\:It~is~a~quadratic~equation

════════════════════════

Question (ii) :

⠀⠀⠀⌬ \sf\:(x-3) (2x+1) =x(x+5)

Solution :

\sf\:(x-3) (2x+1) =x(x+5)

\sf\implies\:x(2x+1)-3(2x+1) =x(x+5)

\sf\implies\:2x^{2}+x-6x-3=x^{2}+5x

\sf\implies\:2x^{2}-5x-3=x^{2}+5x

\sf\implies\:2x^{2}-5x+5x-3=x^{2}

\sf\implies\:2x^{2}-\cancel{5x}+\cancel{5x}-3=x^{2}

\sf\implies\:2x^{2}-3=x^{2}

\sf\implies\:2x^{2}-x^{2}-3=0

\sf\implies\:x^{2}-3=0

\sf\therefore\:It~is~a~quadratic~equation

════════════════════════

Question (iii) :

⠀⠀⠀⌬ \sf\:(2x-1) (x-3) =(x+5) (x-1)

Solution :

\sf\:(2x-1) (x-3) =(x+5) (x-1)

\sf\implies\:2x (x-3) -1(x-3) =x(x-1)+5(x-1)

\sf\implies\:2x^{2}-6x-x+3=x^{2}-x+5x-5

\sf\implies\:2x^{2}-7x+3=x^{2}+4x-5

\sf\implies\:2x^{2}-x^{2}-7x-4x+3+5=0

\sf\implies\:x^{2}-11x+8=0

\sf\therefore\:It~is~a~quadratic~equation

════════════════════════

Question (iv) :

⠀⠀⠀⌬ \sf\:x^{2}+3x+1=(x-2) ^{2}

Solution :

\sf\:x^{2}+3x+1=(x-2) ^{2}

\sf\implies\:x^{2}+3x+1=x^{2}-2 \times x \times 2 +(2)^{2}

\sf\implies\:x^{2}+3x+1=x^{2}-4x +4

\sf\implies\:x^{2}-x^{2}+3x+4x+1-4=0

\sf\implies\:\cancel{x^{2}}-\cancel{x^{2}}+3x+4x+1-4=0

\sf\implies\:3x+4x+1-4=0

\sf\implies\:7x+1-4=0

\sf\implies\:7x-3=0

\sf\therefore\:It~is~not~a~quadratic~equation

[ Since a = 0 ]

════════════════════════

Question (v) :

⠀⠀⠀⌬ \sf\:(x+2) ^{3}=2x(x^{2}-1)

Solution :

\sf\:(x+2) ^{3}=2x(x^{2}-1)

\sf\implies\:x^{3}+(2)^{3}+(3 \times x \times 2)(x+2)=2x^{3}-2x

\sf\implies\:x^{3}+8+6x(x+2)=2x^{3}-2x

\sf\implies\:x^{3}+8+6x^{2}+12x=2x^{3}-2x

\sf\implies\:x^{3}-2x^{3}+8+6x^{2}+12x+2x=0

\sf\implies\:-x^{3}+8+6x^{2}+14x=0

\sf\implies\:-x^{3}+6x^{2}+14x+8=0

\sf\therefore\:It~is~not~a~quadratic~equation

[ Since , highest degree of the equation is 3 ]

════════════════════════

Note : Scroll left to right to view the answer properly !~

Similar questions