Please solve Q23. Thank you
Attachments:
Answers
Answered by
1
abx^2 - (a^2 + b^2 )x + ab =0
abx^2 - a^2x - b^2x + ab
ax (bx - a) - b (bx - a) = 0
(ax - b) ( bx -a) = 0
x = b/a and x = a/b
using quadratic formula
D = b^2 - 4ac = (-(a^2 + b^2 )^2 - 4×ab×ab = (a^2+b^2)^2 - 4a^2b^2 = a^4 + b^4 + 2a^2b^2 - 4a^2b^2 = a^4+b^4-2a^2b^2
= (a^2 - b^2)^2
x = -b+√(D)/2a , -b-√(D)/2a
x = (a^2+b^2)+(a^2-b^2)/2ab , (a^2+b^2) - (a^2-b^2)/2ab
x = a^2+b^2+a^2-b^2/2ab ,
a^2+b^2-a^2+b^2/2ab
x = 2a^2/2ab , 2b^2/2ab
x = a/b and b/a
abx^2 - a^2x - b^2x + ab
ax (bx - a) - b (bx - a) = 0
(ax - b) ( bx -a) = 0
x = b/a and x = a/b
using quadratic formula
D = b^2 - 4ac = (-(a^2 + b^2 )^2 - 4×ab×ab = (a^2+b^2)^2 - 4a^2b^2 = a^4 + b^4 + 2a^2b^2 - 4a^2b^2 = a^4+b^4-2a^2b^2
= (a^2 - b^2)^2
x = -b+√(D)/2a , -b-√(D)/2a
x = (a^2+b^2)+(a^2-b^2)/2ab , (a^2+b^2) - (a^2-b^2)/2ab
x = a^2+b^2+a^2-b^2/2ab ,
a^2+b^2-a^2+b^2/2ab
x = 2a^2/2ab , 2b^2/2ab
x = a/b and b/a
abcde9:
It is to be solved using the quad formula
Similar questions