Please solve ques 38 in the attachment
Attachments:
Answers
Answered by
11
▶ 1 + x² + x² - 3x = 0
⏩ 1 + 2x² - 3x = 0
⏩ 2x² - 3x + 1 = 0
↪ 2x² - 2x - x + 1 = 0
↪ 2x( x - 1 ) - ( x - 1 ) = 0
↪ ( x - 1 ) ( 2x - 1 ) = 0
➡ x = 1 or 2x = 1
x = 1 or x = 1 / 2
Hence,
Proved.
Anonymous:
waah Abhi bhai
Answered by
9
(38).
Given 1 + sin^2Ф = 3sinФcosФ
It can be written as:
= > 1 + sin^2Ф - 3sinФcosФ = 0
= > sin^2Ф + cos^2Ф + sin^2Ф - 2sinФcosФ - sinФcosФ = 0
= > (sin^2Ф - 2sinФcosФ + cos^2Ф) + (sin^2Ф - sinФcosФ) = 0
= > (sinФ - cosФ)^2 + sinФ(sinФ - cosФ) = 0
= > (sinФ - cosФ)[sinФ - cosФ + sinФ] = 0
= > (sinФ - cosФ)[2sinФ - cosФ] = 0
= > (sinФ - cosФ)(2sinФ - cosФ) = 0
(i)
sinФ - cosФ = 0
sinФ = cosФ
sinФ/cosФ = 1
TanФ = 1
(ii)
2sinФ - cosФ = 0
2sinФ = cosФ
sinФ/cosФ = (1/2)
TanФ = (1/2).
Hope it helps!
Similar questions