please solve ques 9 and 10.
IT'S URGENT
Attachments:
Answers
Answered by
3
1.
Consider cosec theta - sin theta = a³
⇒ !/sin theta - sin theta = a³
⇒ 1 - sin² theta/sin theta = a³
cos² theta/ sin theta = a³ → (1)
⇒ (cos² theta/sin theta)²/³ = (a³)²/³
⇒ cos⁴/³ theta/sin²/³ theta = a² → (2)
Now consider, sec theta - cos theta = b³
⇒ 1/cos theta - cos theta = b³
⇒ 1 - cos²theta/cos theta = b³
⇒ sin² theta/cos theta = b³ → (3)
⇒ (sin² theta/cos theta)²/³ = (b³)²/³
⇒ sin⁴/³ theta/cos²/³ theta = b² → (4)
Multiply (2) and (4), we get
(cos⁴/³ theta/sin²/³ theta)× (sin⁴/³ theta/cos²/³ theta) = a²b² → (5)
a² + b² =(cos⁴/³ theta/sin²/³ theta) + (sin⁴/³ theta/cos²/³ theta)
(cos² theta + sin² theta)/(sin²/³ theta cos²/³ theta)
= 1/sin²/³ theta cos²/³ theta
Consider, a²b²(a²+b²) = (sin²/³ theta cos²/³ theta) × 1/sin²/³ theta cos²/³ theta
= 1 Hence proved.
2.
Given, LHS = root tan a tan b + tan a cot b/sin a sec b - sin^2 b/cos^2 a
= root tan a tan(90-a) + tan a cot(90-a)/sin a sec(90-a) - sin^2(90-a)/cos^2 a
= root tan a.cot a + tan a.tana/sin a.cosec a - cos^2 a/cos^2 a
= root 1+tan^2 a/1 - 1
= root tan^2 a
= tan a.
ꃅꂦᖘꍟ ꀤ꓄ ꃅꍟ꒒ᖘꌗ ꌩꂦꀎ
Consider cosec theta - sin theta = a³
⇒ !/sin theta - sin theta = a³
⇒ 1 - sin² theta/sin theta = a³
cos² theta/ sin theta = a³ → (1)
⇒ (cos² theta/sin theta)²/³ = (a³)²/³
⇒ cos⁴/³ theta/sin²/³ theta = a² → (2)
Now consider, sec theta - cos theta = b³
⇒ 1/cos theta - cos theta = b³
⇒ 1 - cos²theta/cos theta = b³
⇒ sin² theta/cos theta = b³ → (3)
⇒ (sin² theta/cos theta)²/³ = (b³)²/³
⇒ sin⁴/³ theta/cos²/³ theta = b² → (4)
Multiply (2) and (4), we get
(cos⁴/³ theta/sin²/³ theta)× (sin⁴/³ theta/cos²/³ theta) = a²b² → (5)
a² + b² =(cos⁴/³ theta/sin²/³ theta) + (sin⁴/³ theta/cos²/³ theta)
(cos² theta + sin² theta)/(sin²/³ theta cos²/³ theta)
= 1/sin²/³ theta cos²/³ theta
Consider, a²b²(a²+b²) = (sin²/³ theta cos²/³ theta) × 1/sin²/³ theta cos²/³ theta
= 1 Hence proved.
2.
Given, LHS = root tan a tan b + tan a cot b/sin a sec b - sin^2 b/cos^2 a
= root tan a tan(90-a) + tan a cot(90-a)/sin a sec(90-a) - sin^2(90-a)/cos^2 a
= root tan a.cot a + tan a.tana/sin a.cosec a - cos^2 a/cos^2 a
= root 1+tan^2 a/1 - 1
= root tan^2 a
= tan a.
ꃅꂦᖘꍟ ꀤ꓄ ꃅꍟ꒒ᖘꌗ ꌩꂦꀎ
Similar questions
Math,
7 months ago
English,
7 months ago
Computer Science,
1 year ago
English,
1 year ago
Math,
1 year ago