Math, asked by VijayaLaxmiMehra1, 1 year ago

Please solve ques no. 15.
From Chapter-2 Polynomial

➡Class 10th

➡Content Quality Solution needed.

➡I will mark as a branliest one for best solution.

➡No Spams please otherwise will be reported or blocked account.

Attachments:

Answers

Answered by skh2
2
Hello,


The form of a quadratic equation is

k( {x}^{2}   -  ( \alpha  +  \beta )x +  \alpha  \beta )
So,

Given that
 \alpha  =  \frac{3 -  \sqrt{3} }{5}  \\  \\  \beta  =  \frac{3 +  \sqrt{3} }{5}


Finding the sum and the product of the quadratic equation's zeroes.

 \alpha  +  \beta  =  \frac{3 -  \sqrt{3} }{5}  +  \frac{3 +  \sqrt{3} }{5}  \\   \\  =  \frac{3 -  \sqrt{3} + 3 +  \sqrt{3}  }{5}  \\  \\  =  \frac{6}{5}  \\  \\
 \alpha  \beta  = ( \frac{3 -  \sqrt{3} }{5} )( \frac{3 +  \sqrt{3} }{5} ) \\  \\  =  \frac{(3 -  \sqrt{3})(3 +  \sqrt{3}  )}{25}  \\  \\  =   \frac{ {3}^{2}  -  {( \sqrt{3}) }^{2} }{25}  \\  \\  =  \frac{9 - 3}{25}  \\  \\  =  \frac{6}{25}
Now

Putting the values of the following in the equation form

k( {x}^{2}  -  \frac{6}{5} x +  \frac{6}{25} ) \\  \\  = (25 {x}^{2}  - 30x + 6)
When the value of the k is equal to 25.


Hope this will be helping you.....

VijayaLaxmiMehra1: Thank you :-)
skh2: welcome ^_^
VijayaLaxmiMehra1: Putting the value in the equation form alpha + beta , alpha × beta then 25x^2-30x+6 how it will comes?
Similar questions