Math, asked by dtkanika23, 1 year ago

Please solve questions 17

Attachments:

Answers

Answered by Anonymous
6
\underline{\underline{\Large{\mathfrak{Solution : }}}}



\underline{\textsf{Given,}} \\ \\ \mathsf{\implies cos( \alpha \: + \: \beta ) \: = \: 0 }



\textsf{We know that, } \\ \\ \mathsf{\implies cos \: 90^{\circ} \: = \: 0 }



\textsf{Now,} \\ \\ \mathsf{\implies cos( \alpha \: + \: \beta )\: = \: cos \: 90^{\circ} } \\ \\ \mathsf{\implies \alpha \: + \: \beta \: = \: 90^{\circ} \qquad...(1)}



<br />\textsf{Now,} \\ \\ \mathsf{= sin( \alpha \: - \: \beta) } \\ \\ \mathsf{ = cos \{90 ^{\circ} \: - \: ( \alpha \: - \: \beta) \}} \\ \\ \textsf{Plug the value of ( 1 ),} \\ \\ \mathsf{= cos \{( \alpha \: + \: \beta) \: - \: ( \alpha \: - \: \beta )\}}<br />\\ \\ \mathsf{ = cos( \cancel{\alpha }\: + \: \beta \: - \: \cancel{ \alpha} \: + \: \beta)} \\ \\ \mathsf{ = cos \: 2 \beta}


\textsf{Trigonometric identity used : } \\ \\ \mathsf{ \implies cos(90^{\circ} \: - \: \theta ) \: = \: sin \: \theta }

Anonymous: Great answer ^_^
dtkanika23: Thanks awesome explanation
Answered by BrainlyShadow
0

\underline{\underline{\Large{\mathfrak{Solution : }}}} \\\\\\</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p></p><p></p><p>\begin{lgathered}\underline{\textsf{Given,}} \\ \\ \mathsf{\implies cos( \alpha \: + \: \beta ) \: = \: 0 }\end{lgathered} </p><p>\\\\\\</p><p>	</p><p>  </p><p></p><p></p><p></p><p>\begin{lgathered}\textsf{We know that, } \\ \\ \mathsf{\implies cos \: 90^{\circ} \: = \: 0 }\end{lgathered} </p><p>\\\\\\</p><p>  </p><p></p><p></p><p></p><p>\begin{lgathered}\textsf{Now,} \\ \\ \mathsf{\implies cos( \alpha \: + \: \beta )\: = \: cos \: 90^{\circ} } \\ \\ \mathsf{\implies \alpha \: + \: \beta \: = \: 90^{\circ} \qquad...(1)}\end{lgathered} </p><p></p><p>	\\\\\\</p><p>  </p><p></p><p></p><p></p><p>\begin{lgathered}\textsf{Now,} \\ \\ \mathsf{= sin( \alpha \: - \: \beta) } \\ \\ \mathsf{ = cos \{90 ^{\circ} \: - \: ( \alpha \: - \: \beta) \}} \\ \\ \textsf{Plug the value of ( 1 ),} \\ \\ \mathsf{= cos \{( \alpha \: + \: \beta) \: - \: ( \alpha \: - \: \beta )\}} \\ \\ \mathsf{ = cos( \cancel{\alpha }\: + \: \beta \: - \: \cancel{ \alpha} \: + \: \beta)} \\ \\ \mathsf{ = cos \: 2 \beta}\end{lgathered} </p><p></p><p>	\\\\\\</p><p>  </p><p></p><p></p><p>\begin{lgathered}\textsf{Trigonometric identity used : } \\ \\ \mathsf{ \implies cos(90^{\circ} \: - \: \theta ) \: = \: sin \: \theta }\end{lgathered}

Similar questions