Math, asked by safia31, 10 months ago

Please solve the above question fast it's urgent ​

Attachments:

Answers

Answered by biligiri
0

Answer:

given : two zeros of quadratic polynomials are

3+√2 and 3-√2.

quadratic polynomial given its two zeros can be formed as below

p (x) = x² - x (sum of zeros) + product of zeros

=> p(x) = x² - x (3+√2+3-√2) + (3+√2)(3-√2)

=> x² - x (6 ) + (9 - 2)

=> x² - 6x + 7

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • Zeroes of quadratic polynomial
  • \tt{3}\pm\sqrt{2}

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Quadratic polynomial

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha{and}\beta

\tt\alpha{=3+\sqrt{2}}\\{\beta=3-\sqrt{2}}

Then

\tt\alpha{+}\beta\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here

__________________________

\tt\implies\alpha{+}\beta{=}{3-\sqrt{2}}+3+\sqrt{2}

=>6

&

\tt\implies\alpha{\times}\beta{=}{3-\sqrt{2}}{\times}3+\sqrt{2}

=>(3-√2)(3+√2) (breaking in form of a²-b²)

=>3²-√2²

=>9-2

=>7

___________________________

From this we conclude that

  • a=1
  • -b=6
  • c=7

Creating polynomial

ax²+bx+c

=>x²-6x+7

Additional Information

\rightarrow\tt\alpha{+}\beta{=}\dfrac{6}{1}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{7}{1}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Similar questions