Please solve the above questions... Recommended
Attachments:
Answers
Answered by
1
Given that,
x=√(a/b)+√(b/a)
x=√a/√b+√b/√a
x=[√(a²)+√(b²)]/√ab
x=(a+b)/√ab.......................................1
x²-4=(a+b)²/ab-4
x²-4=[a²+b²+2ab-4ab]/ab
x²-4=(a-b)²/ab........................................2
We have,
=√(x²-4)/[x+√(x²-4)]
=√[(a-b)²/ab]/[(a+b)/√ab+√(a-b)²/ab]
=[(a-b)/√ab]/[(a+b)/√ab+(a-b)/√ab]
=[(a-b)/√ab]/[2a/√ab]
=(a-b)/√ab×√ab/(2a)
=(a-b)/2a.
Hence value of √(x²-4)/[x+√(x²-4)]=(a-b)/2a
x=√(a/b)+√(b/a)
x=√a/√b+√b/√a
x=[√(a²)+√(b²)]/√ab
x=(a+b)/√ab.......................................1
x²-4=(a+b)²/ab-4
x²-4=[a²+b²+2ab-4ab]/ab
x²-4=(a-b)²/ab........................................2
We have,
=√(x²-4)/[x+√(x²-4)]
=√[(a-b)²/ab]/[(a+b)/√ab+√(a-b)²/ab]
=[(a-b)/√ab]/[(a+b)/√ab+(a-b)/√ab]
=[(a-b)/√ab]/[2a/√ab]
=(a-b)/√ab×√ab/(2a)
=(a-b)/2a.
Hence value of √(x²-4)/[x+√(x²-4)]=(a-b)/2a
Similar questions