Please solve
The best answer will get brainliest
Answers
Answer:
q²x³ - 2pqx² + p²x + q
Step-by-step explanation:
α , β & γ are roots of x³ + px + q = 0
For a³ + bx² + cx + d here a = 1 , b = 1 , c = p d = q
α + β + γ = -b/a = 0
α β γ = -d/a = q
α β + β γ + α γ = c/a = p
(1/α + 1/β) , ((1/β + 1/γ) , (1/γ + 1/α)
Sum of roots = 2 (1/α + 1/β + 1/γ) = 2 (β γ + α γ + α β)/α β γ = 2p/q = -b/a
=> a = q , b = -2p
Products of roots = (1/α + 1/β)* ((1/β + 1/γ) *(1/γ + 1/α)
= (α + β)(β + γ )(α + γ)/(α β γ)²
= (-γ)(-α)(-β)/(α β γ)²
= -1/α β γ
= -1/q = -d/a => d = 1
(1/α + 1/β) *(1/γ + 1/α) + (1/α + 1/β)* (1/β + 1/γ) + (1/β + 1/γ) *(1/γ + 1/α)
= (α + β)(α + γ)/α β αγ + (α + β)(β + γ)/α β βγ + (β + γ)(α + γ)/α β γγ
= (-γ)(-β)/α β αγ + (-γ)(-α)/α β βγ + (-α)(-β)/α β γγ
= 1/α² + 1/β² + 1/γ²
= ( (αβ)² + (αγ)² + (βγ)²) / (αβγ)²
= ( (αβ + αγ + βγ)² - 2(αβαγ + αββγ + αγβγ) ) /(αβγ)²
= ( p² - 2αβγ(α + β + γ) )/ q²
= p²/q²
= (p²/q)/q = c/a => c = p²/q
qx³ -2px² + (p²/q)x + 1
= q²x³ - 2pqx² + p²x + q