Math, asked by harjotsingh213pbec17, 1 year ago

please solve the fast important

Attachments:

Answers

Answered by siddhartharao77
1

Given : \frac{\sqrt{5} + 1}{\sqrt{5} - 1} +\frac{\sqrt{5} - 1 }{\sqrt{5} + 1}

=> \frac{(\sqrt{5} + 1)(\sqrt{5} + 1) + (\sqrt{5} - 1)(\sqrt{5} - 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1)}

=> \frac{(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2}{(\sqrt{5})^2 - (1)^2 }

=> \frac{(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2}{5 - 1}

=> \frac{(\sqrt{5} + 1)^2 + (\sqrt{5} - 1)^2}{4}

=> \frac{(5 + 2\sqrt{5} + 1) + (5 - 2\sqrt{5} + 1)}{4}

=> \frac{5 + 2\sqrt{5} + 1 + 5 - 2\sqrt{5} + 1}{4}

=> \frac{12}{4}

=> 3

Now,

=> 3 = a + b\sqrt{5}

It can be written as,

=> 3 + 0\sqrt{5} = a + b\sqrt{5}


Therefore:

The value of a = 3 and b = 0.


Hope this helps!

Answered by Ben193
0
hey!
the answer is,
a = 3, b = 0
Similar questions