Math, asked by tanishkds, 4 months ago

please solve the following ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline\blue{\bold{ANSWER - a}}

Evaluate

 \tt \: sin12\degree \:sin25\degree \: sin30\degree \: sec65\degree \: sec78\degree \: sin90 \degree

Identity used :-

(1)\rm \: \boxed{ \pink{ \bf \:  sin(90\degree - x)\:  =  \tt \:cosx }}

(2)\rm \: \boxed{ \pink{ \bf \: sec(90\degree - x) \:  =  \tt \:cosecx }}

(3)\rm \: \boxed{ \pink{ \bf \: cosecx \:  =  \tt \: \dfrac{1}{sinx} }}

(4)\rm \: \boxed{ \pink{ \bf \: secx \:  =  \tt \:\dfrac{1}{cosx}  }}

\large\underline\purple{\bold{Solution :-  }}

 \tt \: sin12\degree \:sin25\degree \: sin30\degree \: sec65\degree \: sec78\degree \: sin90 \degree

 \tt \:  = sin12\degree \:sin25\degree \:  \times \dfrac{1}{2}   \times \: sec(90\degree - 25\degree) \: sec(90\degree - 12\degree) \:  \times 1

 \tt \:  = \dfrac{1}{2}  \times sin12\degree \: sin25\degree \: cosec25\degree \: cosec12\degree

 \tt \:  = \dfrac{1}{2}  \times sin25\degree \: \times sin12\degree \: \times \dfrac{1}{sin25\degree \:}  \times \dfrac{1}{sin12\degree \:}

 \tt \:  = \dfrac{1}{2}

\large\underline\blue{\bold{ANSWER - b}}

\rm :\implies\:x \:  = \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} }

\rm :\implies\:x = \dfrac{2 -  \sqrt{3}}{2  +   \sqrt{3}}   \: \times  \: \dfrac{2 -  \sqrt{3}}{2 -  \sqrt{3}}

\rm :\implies\:x \:  =  \: \dfrac{ {(2 -  \sqrt{3})}^{2} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

\rm :\implies\:x \:  =  \: \dfrac{4 + 3 - 4 \sqrt{3} }{4 - 3}

\rm :\implies\: \boxed{ \pink{ \bf \: x \:  =  \tt \: 7 - 4 \sqrt{3} }}

Now,

Consider,

\rm :\implies\:y \:  = \dfrac{2  +   \sqrt{3} }{2  -   \sqrt{3} }

\rm :\implies\:y = \dfrac{2  +   \sqrt{3}}{2   -    \sqrt{3}}   \: \times  \: \dfrac{2  +   \sqrt{3}}{2  +   \sqrt{3}}

\rm :\implies\:y \:  =  \: \dfrac{ {(2  +   \sqrt{3})}^{2} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

\rm :\implies\:y \:  =  \: \dfrac{4 + 3  + 4 \sqrt{3} }{4 - 3}

\rm :\implies\: \boxed{ \pink{ \bf \: y \:  =  \tt \:7 + 4 \sqrt{3}  }}

Now,

Consider,

\rm :\implies\: {x}^{2}  -  {y}^{2}

\rm :\implies\: {(7  -  4 \sqrt{3} )}^{2}  -  {(7 + 4 \sqrt{3}) }^{2}

 \because \: ({ \pink{ \tt \:  {(x + y)}^{2}  -  {(x - y)}^{2}   = 4xy\: }})

\rm :\implies\: - 4 \times 7 \times 4 \sqrt{3}

\rm :\implies\: - 112 \sqrt{3}

Similar questions