Math, asked by alimukhtar009, 4 months ago

The ratio between the base angle and the vertical angle of an isosceles triangle is 2:5. Find each of the trangle.​

Answers

Answered by viplavbhatnagar8d
1

Step-by-step explanation:

2 X + 2 X + 5 x = 180

12x =180

x= 180/12

x=15

2x=15×2=30

and 5x= 5×15= 75

Answered by Clαrissα
6

AnswEr :

The angles are 40°, 40° and 100°.

Given :

  • Ratio between the base angle & the vertical angle of an isosceles triangle is 2:5.

To Find :

  • Angles of each triangle.

Calculation :

Let's assume the angles of each triangle \triangle as 'x'

So, the angles are :-

  •  { \blue{\rm \: 2 x }}
  •  { \blue{\rm \: 2 x }}
  •  { \blue{\rm \: 5  x }}

Now, calculating :-

 \longrightarrow \sf \: 2x \:  +  \:  2x \:  +  \: 5x \:  = \:  180° \:  \\  \\  \\  \longrightarrow \sf \: 9x \:  =  \: 180°  \:   \bf \: \bigg(Sum \:  of \:  three \:  angles \bigg) \\  \\  \\  \longrightarrow \sf \: x \:  =  \: \cancel \dfrac{180}{9} \\  \\  \\  \longrightarrow {\boxed{ \bf{ \red{20}}}} \star

\therefore Hence, the sum of three angles is 20.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

• Now, let's calculate the angles. In order to calculate the angles, we'll be multiplying the angles with the value of sum of three angles.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

~ Calculating for first angle ;

 \dag \: {\underline{ \bf{First \: angle :}}}  \\  \\  \\  \longrightarrow \sf \: 2x \:  \times  \: 20 \\  \\  \\  \longrightarrow{ \boxed{ \blue{ \bf{40}}}} \star \: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

~ Calculating for second angle ;

 \dag \: {\underline{ \bf{Second \: angle :}}}  \\  \\  \\  \longrightarrow \sf \: 2x \:  \times  \: 20 \\  \\  \\  \longrightarrow{ \boxed{ \green{ \bf{40}}}} \star \:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

~ Calculating for third angle ;

 \dag \: {\underline{ \bf{Third \: angle :}}}  \\  \\  \\  \longrightarrow \sf \: 5x \:  \times  \: 20 \\  \\  \\  \longrightarrow{ \boxed{ \red{ \bf{100}}}} \star \:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the angles are 40°, 40° and 100°.

Similar questions