Math, asked by physisit, 10 months ago

please solve the integration...
correct answer mark as brain list...

Attachments:

Answers

Answered by MarkAsBrainliest
6

\displaystyle\underline{\mathsf{Solution:}}

\displaystyle\mathsf{Now,\:\int \pi (\sqrt{2\:sin2y})^{2}\:dy}

\displaystyle=\mathsf{\pi \int 2\:sin2y\:dy}

\displaystyle=\mathsf{2\pi \times \frac{-cos2y}{2}}

\displaystyle=\mathsf{-\pi\:cos2y}

\displaystyle\mathsf{Then,\:taking\:limits,\:we\:write}

\displaystyle\:\:\:\mathsf{-\pi\:[cos2y]_{0}^{\frac{\pi}{2}}}

\displaystyle=\mathsf{-\pi\:(cos0-cos\pi)}

\displaystyle=\mathsf{-\pi\:(1+1)}

\displaystyle=\mathsf{-2\pi}

\displaystyle\textsf{This is the required integral.}

Similar questions