Math, asked by kingofbrainly012, 11 months ago

please solve the problem​

Attachments:

Answers

Answered by Anonymous
51

Given :

  • AB || PQ || CD
  • AB = x units
  • CD = y units
  • PQ = z units

To prove :

  • \sf{\dfrac{1}{x}\:+\:\dfrac{1}{y}\:=\:\dfrac{1}{z}}

Solution :

In Δ ABD and Δ PQD,

\sf{\angle\:ABD\:=\:\angle\:PQD\:}

\sf{\angle\:ADB\:=\:\angle\:QDB}

\sf{\big[\because\:common\:angle\big]}

° ΔBDA ~ Δ QDP.

\sf{\dfrac{BD}{QD}\:=\:\dfrac{DA}{DP}\:=\:\dfrac{BA}{QP}}

\sf{\big[Corresponding\:sides\:of\:similar\:triangles\:are\:in\:proportion\big]}

\sf{\dfrac{BD}{QD}\:=\:\dfrac{x}{z}}

By invertendo,

\sf{\dfrac{QD}{BD}\:=\:\dfrac{z}{x}\:\:\:(1)}

Now, in ΔCDB and ΔPQB,

\sf{\angle\:CDB\:=\:\angle\:PQB}

\sf{\angle\:CBD\:=\:\angle\:PBQ}

\sf{\big[\because\:common\:angle\big]}

° Δ DBC ~ Δ QBP.

\sf{\dfrac{DB}{QB}\:=\:\dfrac{BC}{BP}\:=\:\dfrac{DC}{QP}}

\sf{\big[Corresponding\:sides\:of\:similar\:triangles\:are\:in\:proportion\big]}

\sf{\dfrac{DB}{QB}\:=\:\dfrac{y}{z}}

By invertendo,

\sf{\dfrac{QB}{DB}\:=\:\dfrac{z}{y}\:\:\:(2)}

Add equation (1) and (2),

\sf{\dfrac{z}{x}\:+\:\dfrac{z}{y}\:=\:\dfrac{QD}{BD}\:+\:\dfrac{QB}{DB}}

\sf{\dfrac{z}{x}\:+\:\dfrac{z}{y}\:=\:\dfrac{QD+QB}{BD}}

\sf{\dfrac{z}{x}\:+\:\dfrac{z}{y}\:=\:\dfrac{BD}{BD}}

\sf{\dfrac{z}{x}\:+\:\dfrac{z}{y}\:=\:1}

\sf{\:z\:=\:\Big(\dfrac{1}{x}\:+\:\dfrac{1}{y}\Big)\:=\:1}

\sf{\dfrac{1}{x}\:+\:\dfrac{1}{y}\:=\:\dfrac{1}{z}}

Answered by TheBrainlyWizard
137

\bf{\underline{\underline{Given}}}

\mathsf{\star\: \: AB \: II \: PQ \: II \: CD}

\mathsf{\star\: \: AB = x \: units}

\mathsf{\star\:\: CD = y \: units}

\mathsf{\star\:\: PQ = z \: units}\\ \\

\bf{\underline{\underline{To\:\:prove}}}\\

\mathsf{\star\:\: \frac{1}{x} +  \frac{1}{y} = \frac{1}{z} }\\ \\

\bf{\underline{\underline{Solution}}}

\large{\mathsf{\blue{Let\:\:BQ = a\: \: and\: \: DQ = b}}}

In ∆ ABD and ∆ PQD

\mathsf{\angle ADB = \angle PDB \: \: \: (common) }

\mathsf{\angle ABQ = \angle PQD \: \: \: (corresponding\: angles) }\\ \\

∴ ∆ ABD ~ ∆ PQD (by AA criteria)

\mathsf{\implies\: \frac{AB}{PQ} = \frac{BD}{DQ}}\\

\mathsf{\implies\: \frac{AB}{BD} = \frac{PQ}{DQ}} \\

\mathsf{\implies\: \frac{AB}{BQ + DQ} = \frac{PQ}{DQ}} \\

Let's substitute the value

\mathsf{\implies\: \frac{x}{a + b} = \frac{z}{b}}\\

Taking the reciprocal

\mathsf{\implies\: \frac{a + b}{x} = \frac{b}{z}}\\

On cross multiplying, we get:

\mathsf{\implies\:  z (a + b) = bx}\\

\mathsf{\implies\:  az + bz = bx}\\

\mathsf{\implies\:  az = bx - bz}\\

\mathsf{\implies\:  a = \frac{b (x - z)}{z}\: \: \: \red{\rightarrow \: (1)}}\\ \\

In ∆ DBC and ∆ QBP

\mathsf{\angle DBC = \angle QBP \: \: \: (common) }\\

\mathsf{\angle BDC = \angle BQP \: \: \: (corresponding\: angles) }\\ \\

∴ ∆ DBC ~ ∆ QBP (by AA criteria)

\mathsf{\implies\: \frac{BD}{BQ} = \frac{CD}{PQ}}\\

\mathsf{\implies\: \frac{PQ}{BQ} = \frac{CD}{BD}} \\

\mathsf{\implies\: \frac{PQ}{BQ} = \frac{CD}{BQ + DQ}} \\

Let's substitute the value

\mathsf{\implies\: \frac{z}{a} = \frac{y}{a + b}}\\

Taking the reciprocal

\mathsf{\implies\: \frac{a}{z} = \frac{a + b}{y}}\\

On cross multiplying, we get:

\mathsf{\implies\:  ay = z (a + b) }

\mathsf{\implies\:  ay = az + bz}

\mathsf{\implies\:  ay - az = bz}\\

\mathsf{\implies\:  a (y - z) = bz}\\

\mathsf{\implies\:  \frac{b (x - z)}{z} (y - z) = bz \: \: \: \red{[using \:(1)]}}\\

\mathsf{\implies\:  \frac{\cancel{b} (x - z)}{z} (y - z) = \cancel{b} z}\\

\mathsf{\implies\:  (x - z) (y - z) = z^{2}}\\

\mathsf{\implies\:  xy - xz - yz + z^{2} = z^{2}}\\

\mathsf{\implies\:  xy - xz - yz + \cancel{z^{2}} = \cancel{z^{2}}}\\

\mathsf{\implies\:  xy = xz + yz}\\

Dividing them by xyz, we get:

\mathsf{\implies\:  \frac{xy}{xyz} = \frac{xz}{xyz} + \frac{yz}{xyz}}\\

\fbox{\mathsf{\green{\implies\:  \frac{1}{z} = \frac{1}{y} + \frac{1}{x}}}}\\

Hence Proved

Similar questions