please solve the problem
Attachments:
Answers
Answered by
0
Answer:
ΔABC is isosceles.
Step-by-step explanation:
Given, A + B + C = π
⇒ C + A = π - B.
Now,
⇒ cosA = sinB/2sinC
⇒ 2sinCcosA = sin B
We know that 2sinacosb = sin(a + b) + sin(a - b).
⇒ sin(C + A) + sin(C - A) = sin B
⇒ sin(π - B) + sin(C - A) = sin B
⇒ sin B + sin(C - A) = sin B
⇒ sin(C - A) = 0
⇒ sin(C - A) = sin 0
⇒ C - A = 0
⇒ C = A
∴ΔABC is isosceles.
Hope this helps!
Answered by
1
Step-by-step explanation:
By sine law,
sinBsinC=bc
By cosine law,
cosA=c2+b2−a22cb
Putting these in the given expression :
c^2+b^2−a22cb=b2c
c^2+b^2−a^2=b^2
c=a
Therefore,Δ ABC is isosceles.
Similar questions