Math, asked by shivalitom2008, 11 months ago

please solve the question​

Attachments:

Answers

Answered by saptarshis918
1

Answer:

a=31/4

d=19/2-31/4=7/4

a99=a+98d=31/4+98*7/4=7.75+177.5=185.25

Step-by-step explanation:

Answered by Anonymous
8

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

The A.P. series is given by

 \rightarrow7 \frac{3}{4} ,9 \frac{1}{2} ,11 \frac{1}{4}  \\ \rightarrow  \frac{31}{4} , \frac{19}{2} , \frac{45}{4}  \\

Now the difference is ,,

 \rightarrow \: d =  \frac{19}{2}  -  \frac{31}{4} \\  \rightarrow \boxed{ d =  \frac{7}{4} }

first term is,,

 \rightarrow  \boxed{a =  \frac{31}{4} }

now we have the formula of n'th term is..

 \implies \boxed{a_n = a + (n - 1)d}

therefore the 99'th term is .....

 \implies \boxed{a_{99 }= a+ (99 - 1)d} \\  \implies \boxed{a_{99 }=  \frac{31}{4} + 98 \times  \frac{7}{4} } \\ \implies \boxed{a_{99 }= \frac{31 +686 }{4}  =  \frac{717}{4}  }

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions