Math, asked by adityaneupane2004, 1 day ago

Please solve the question in attachment​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Evaluate the following limit

 \rm :\longmapsto\:\displaystyle\lim_{x \to 64} \frac{{\bigg[x\bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[x\bigg]}^{\dfrac{1}{3}} - 4}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

 \rm :\longmapsto\:\displaystyle\lim_{x \to 64} \frac{{\bigg[x\bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[x\bigg]}^{\dfrac{1}{3}} - 4}

If we substitute directly x = 64, we get

 \rm \:  =  \:  \dfrac{{\bigg[64\bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[64\bigg]}^{\dfrac{1}{3}} - 4}

 \rm \:  =  \:  \dfrac{{\bigg[ {2}^{6} \bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[ {4}^{3} \bigg]}^{\dfrac{1}{3}} - 4}

\rm \:  =  \: \dfrac{2 - 2}{4 - 4}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, to evaluate the

 \rm :\longmapsto\:\displaystyle\lim_{x \to 64} \frac{{\bigg[x\bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[x\bigg]}^{\dfrac{1}{3}} - 4}

we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x =  {y}^{6}, \: as \: x \to \: 64, \:  \: so \: y \to \: 2 \: }

So, above expression can be rewritten as

 \rm \:  =  \: \displaystyle\lim_{y \to 2} \frac{{\bigg[ {y}^{6} \bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[ {y}^{6} \bigg]}^{\dfrac{1}{3}} - 4}

\rm \:  =  \: \displaystyle\lim_{y \to 2} \frac{y - 2}{ {y}^{2}  - 4}

\rm \:  =  \: \displaystyle\lim_{y \to 2} \frac{y - 2}{ {y}^{2}  -  {2}^{2} }

\rm \:  =  \: \displaystyle\lim_{y \to 2} \frac{\cancel{y - 2}}{\cancel{(y - 2)} \:  \: (y + 2)}

\rm \:  =  \: \displaystyle\lim_{y \to 2} \frac{1}{y + 2}

\rm \:  =  \: \dfrac{1}{2 + 2}

\rm \:  =  \: \dfrac{1}{4}

Hence,

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 64} \frac{{\bigg[x\bigg]}^{\dfrac{1}{6}} - 2}{{\bigg[x\bigg]}^{\dfrac{1}{3}} - 4} =  \frac{1}{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{tanx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{log(1 + x)}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {e}^{x} \:  -  \: 1 }{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {a}^{x} \:  -  \: 1 }{x} \:  =  \: loga \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to a} \:  \frac{  {x}^{n}   -  {a}^{n} }{x - a} \:  =  \:  {na}^{n - 1}  \: }}

Answered by anshdiyasingh12
0

hope you went correct answer from my side

Attachments:
Similar questions