Math, asked by pranati61, 10 months ago

please solve the question tan A + B by cot a minus b equal to tan square A minus tan square b by 1 minus tan square into tan square B please solve my question very quickly .I need to help​ .​

Answers

Answered by Anonymous
164

Solution:

Proper Question:

Tan(A+B)/Cot(A-B)= tan²A - tan²B/1-tan²A.tan²B

Explanation:

The given expression is Tan(A+B)/Cot(A-B).

We will use some Trigonometric Compound Identities to solve this question:

Explanation:

Tan(A+B) = (Tan A + Tan B/ 1 - TanA.TanB)

Tan(A-B) = (Tan A - Tan B/ 1 + tanA.tanB

Explanation:

Tan(A+B)/Cot(A-B)

Tan(A+B) × tan(A-B)

(Tan A + Tan B/ 1 - TanA.TanB) × Tan A - Tan B/ 1 + tanA.tanB

Tan²A - Tan²B = 1 - tan²A.Tan²B

Answered by Anonymous
58

\huge\sf{Answer:-}

Given

\sf =\frac{Tan(A+B)}{Cot(A-B)}

Trigonometric Compound Identities

Hence,

\sf =Tan \: (A \: + \: B) = \frac{(Tan  \: A \:  +  \: Tan \:  B)}{(1 \:  - Tan \: * \: Tan \: B)}

\sf =Tan(A-B) = \frac{Tan \:  A  \: -  \: Tan  \: B}{1 \:  +  \: tan \: A \: tan \: B}

So,

\sf  = \frac{Tan \: (A \: + \: B)}{Cot \: (A \: - \: B)}

\sf = Tan \: (A \: + \: B) × tan \: (A \: - \: B)

\sf =\frac{(Tan A + Tan B}{1 - (TanA \: TanB) }  × \frac{Tan A - Tan B}{1 + tanA*tanB}

= Tan²A - Tan²B = 1 - tan²A*Tan²B

Similar questions