please solve these questions
14th question
Attachments:

Answers
Answered by
7
Hey Sheil ,
Here is your solution :
Given,
Quadratic equation = x² - p( x + 1 ) - c = x² - px - p - c.
α and ß are its zeroes.
Here,
Coefficient of x² ( a ) = 1
Coefficient of x ( b ) = -p
Constant term ( c ) = - ( p + c ).
Now,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( -p ) ÷ 1
⇒ α + ß = p ----------- ( 1 )
And ,
⇒ Product of zeroes = c/a
⇒ αß = - ( p + c ) ÷ 1
∴ αß = - ( p + c ).
Now,
⇒ ( α + 1 ) ( ß + 1 ) = 1 - c
⇒ αß + α + ß + 1 = 1 - c
⇒ ( αß ) + ( αß ) + 1 = 1 - c
By substituting the values of ( α + ß ) and αß.
⇒ - ( p + c ) + p + 1 = 1 - c
⇒ -p -c + p + 1 = 1 - c
⇒ -p + p + 1 - c = 1 - c
∴ 1 - c = 1- c.
Proved !!
Hope it helps !!
Here is your solution :
Given,
Quadratic equation = x² - p( x + 1 ) - c = x² - px - p - c.
α and ß are its zeroes.
Here,
Coefficient of x² ( a ) = 1
Coefficient of x ( b ) = -p
Constant term ( c ) = - ( p + c ).
Now,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( -p ) ÷ 1
⇒ α + ß = p ----------- ( 1 )
And ,
⇒ Product of zeroes = c/a
⇒ αß = - ( p + c ) ÷ 1
∴ αß = - ( p + c ).
Now,
⇒ ( α + 1 ) ( ß + 1 ) = 1 - c
⇒ αß + α + ß + 1 = 1 - c
⇒ ( αß ) + ( αß ) + 1 = 1 - c
By substituting the values of ( α + ß ) and αß.
⇒ - ( p + c ) + p + 1 = 1 - c
⇒ -p -c + p + 1 = 1 - c
⇒ -p + p + 1 - c = 1 - c
∴ 1 - c = 1- c.
Proved !!
Hope it helps !!
Anonymous:
:)
Similar questions