Math, asked by Abhishek95265, 9 months ago

please solve these questions no spam plese ​

Attachments:

Answers

Answered by mufeedhapc256
0

Answer:

a=4 and b=-1

Step-by-step explanation:

______________________________

given,

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  = a -  \sqrt{15} b

L.H.S,=

 =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }   \\  =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }  \\  =  \frac{( \sqrt{5} \times  \sqrt{5} ) + ( \sqrt{5}  \times  \sqrt{3} ) + ( \sqrt{3} \times  \sqrt{5} ) + ( \sqrt{3}   \times  \sqrt{3})  }{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5} +  \sqrt{3}  }  \\  =  \frac{5 +  \sqrt{15} +  \sqrt{15} + 3  }{( { \sqrt{5} }^{2}  -  { \sqrt{3} }^{2} )}  \\  =  \frac{8 + 2 \sqrt{15} }{5 - 3}   \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  =  \frac{8}{2} +  \frac{2 \sqrt{15} }{2}   \\  = 4 +  \sqrt{15}

comparing LHS with RHS we get,

a=4 and b=-1

Similar questions