Physics, asked by palak3990, 9 months ago

Please solve these questions of Physics i have to submit my assignment soon . (With working not the direct answer)
I will mark you as brainliest if you help me.​​

Attachments:

Answers

Answered by Anonymous
11

Solutions:

1). Given that -

  • \sf{\vec{r} = (3 \hat{i} + 4 \hat{j} + 7 \hat{k})}

We've to find it's magnitude.

\longrightarrow \sf{Magnitude\:=\:\sqrt{3^{2} + 4^{2} + 7^{2}}}

\longrightarrow \sf{Magnitude\:=\:\sqrt{9 + 16 + 49}}

\longrightarrow \sf{Magnitude\:=\:\sqrt{74}\:metre}

Therefore, magnitude of the given vector will be 74 m.

\rule{200}2

2). Given vectors -

  • \sf{\vec{A} = 2 \hat{i} + 4 \hat{j} - 5 \hat{k}}
  • \sf{\vec{B} = \hat{i} + 2 \hat{j} + 3 \hat{k}}

We've to find the unit vector parallel to the resultant of given vectors.

Resultant addition of vectors, R = A + B

\longrightarrow \sf{R = (2 \hat{i} + 4 \hat{j} - 5 \hat{k}) + (\hat{i} + 2 \hat{j} + 3 \hat{k})}

\longrightarrow \sf{R = 2 \hat{i} + 4 \hat{j} - 5 \hat{k} + \hat{i} + 2 \hat{j} + 3 \hat{k}}

\longrightarrow \sf{R = 3 \hat{i} + 6 \hat{j} - 2 \hat{k}}

Magnitude -

\longrightarrow \sf{Magnitude\:=\:\sqrt{3^{2} + 6^{2} + (-2)^{2}}}

\longrightarrow \sf{Magnitude\:=\:\sqrt{9 + 36 + 4}}

\longrightarrow \sf{Magnitude\:=\:\sqrt{49}}

\longrightarrow \sf{Magnitude = 7\:units}

Now,

Unit vector is the ratio of complete vector and Its magnitude.

\large{\boxed{\sf{\blue{Unit\:vector\:=\:\dfrac{3 \hat{i} + 6 \hat{j} - 2 \hat{k}}{7}}}}}

\rule{200}2

3). Given vectors -

  • \sf{\vec{A} = \hat{i} + 2 \hat{j} + 3 \hat{k}}
  • \sf{\vec{B} = 2 \hat{i} - \hat{j}}

Magnitude of A -

\longrightarrow \sf{Magnitude\:of\:A\:=\:\sqrt{1^{2} + 2^{2} + 3^{2}}}

\longrightarrow \sf{Magnitude\:of\:A\:=\:\sqrt{1 + 4 + 9}}

\longrightarrow \sf{Magnitude\:of\:A\:=\:\sqrt{14}}

Magnitude of B -

\longrightarrow \sf{Magnitude\:of\:B\:=\:\sqrt{2^{2} + (-1)^{2}}}

\longrightarrow \sf{Magnitude\:of\:B\:=\:\sqrt{4 + 1}}

\longrightarrow \sf{Magnitude\:of\:B\:=\:\sqrt{5}}

We know that,

\sf{\vec{A} . \vec{B} = AB \cos \theta}

Subsituting the values,

\longrightarrow \sf{(\hat{i} + 2 \hat{j} + 3 \hat{k}).(2 \hat{i} - \hat{j}) = \sqrt{14} \sqrt{15} \cos \theta}

\longrightarrow \sf{\hat{i} (2 \hat{i} - \hat{j}) + 2 \hat{j} (2 \hat{i} - \hat{j}) + 3 \hat{k} (2 \hat{i} - \hat{j}) = \sqrt{14} \sqrt{15} \cos \theta}

\longrightarrow \sf{2 (\hat{i} . \hat{i}) - (\hat{i} . \hat{j}) + 4 (\hat{i} . \hat{j}) - 2 (\hat{j} . \hat{j}) + 6 (\hat{i} . \hat{k}) - 3 (\hat{k} . \hat{j}) = \sqrt{14} \sqrt{15} \cos \theta}

\longrightarrow \sf{2(1) - (0) + 4(0) - 2(1) + 6(0) - 3(0) = \sqrt{14} \sqrt{15} \cos \theta}

\longrightarrow \sf{2 - 2 = \sqrt{14} \sqrt{15} \cos \theta}

\longrightarrow \sf{\cos \theta = 0}

\longrightarrow \sf{\cos 90^{\circ} = 0}

\longrightarrow \sf{\theta = 90^{\circ}}

Therefore, given vectors are perpendicular to each other.

Hence proved!

\rule{200}2

Points to remember -

  • \sf{\hat{i} . \hat{i} = 1}
  • \sf{\hat{j} . \hat{j} = 1}
  • \sf{\hat{k} . \hat{k} = 1}
  • \sf{\hat{i} . \hat{j} = 0}
  • \sf{\hat{j} . \hat{k} = 0}
  • \sf{\hat{k} . \hat{i} = 0}
Answered by Anonymous
11

AnswEr :

4) Given,

 \sf  \vec{f} =  \hat{i} + 2 \hat{j} -   \hat{k} \\  \sf \vec{s} = 4 \hat{i} -  \hat{j} + 7 \hat{k}

Workdone is the cross product of force and displacement vector.

 \sf W = \vec{f}. \vec{s}

We know that,

 \sf \vec{a}. \vec{b} = a_1b_1 + a_2b_2 + a_3b_3

Therefore,

 \longrightarrow \sf \:W = 4 - 2 - 7 \\  \\  \longrightarrow \sf \:  W =  - 5 \: J

5) Given,

\sf \vec{A} = 2 \hat{I} - 3\hat{j} + 4 \hat{k} \\ \sf \vec{B} = -6 \hat{i} + 9\hat{j} -12 \hat{k}

Here,

\sf \vec{B} = - 3 \vec{A}

Thus, the two vectors are parallel to eachother.

6) Refer to the Attachment.

Attachments:
Similar questions