please solve these two questions with full steps.
Attachments:
Answers
Answered by
2
121)
Given , C = 45°
so,
A + B + C = 180°
A + B + 45° = 180°
A + B = 135°
take both sides tan
tan( A + B) = tan( 135°)
( tanA + tanB )/( 1- tanA. tanB) = tan(180°-45°) = -tan45° = -1
tanA + tanB = -( 1- tanA.tanB)
tanA + tanB = - 1 + tanA.tanB
1/cotA + 1/cotB = -1 + 1/cotA.cotB
( cotA + cotB)/( cotA.cotB) = { 1 - cotA.cotB)/cotA.cotB
cotA + cotB + cotA.cotB = 1
cotA + cotB + cotA.cotB +1 = 1 + 1 = 2
cotA + cotB ( 1+ cotA) +1 = 2
( 1+ cotA)( 1 + cotB) = 2
hence option (c) is answer .
===============================
122 we know ,
1 , w , w² are the roots of x³ +1 = 0
where ,
now,
(x -2)³ + 27 = 0
( x -2)³ +(3)³ = 0
( x -2+ 3){ (x -2)² + (3)² - 3(x -2) } = 0
(x +1)( x² -4x + 4 +9 - 3x +6) = 0
(x +1)( x² -7x +19) = 0
x + 1= 0 and x² - 7x + 19 = 0
x = -1 and x = { 7±√27i)/2
x = 4/2 + ( 3 ±3√3i)/2
= 2 + 3( 1± √3i)/2
hence,
x = -1 , 2 +3 w , 2 +3 w²
option ( B) is answer
Given , C = 45°
so,
A + B + C = 180°
A + B + 45° = 180°
A + B = 135°
take both sides tan
tan( A + B) = tan( 135°)
( tanA + tanB )/( 1- tanA. tanB) = tan(180°-45°) = -tan45° = -1
tanA + tanB = -( 1- tanA.tanB)
tanA + tanB = - 1 + tanA.tanB
1/cotA + 1/cotB = -1 + 1/cotA.cotB
( cotA + cotB)/( cotA.cotB) = { 1 - cotA.cotB)/cotA.cotB
cotA + cotB + cotA.cotB = 1
cotA + cotB + cotA.cotB +1 = 1 + 1 = 2
cotA + cotB ( 1+ cotA) +1 = 2
( 1+ cotA)( 1 + cotB) = 2
hence option (c) is answer .
===============================
122 we know ,
1 , w , w² are the roots of x³ +1 = 0
where ,
now,
(x -2)³ + 27 = 0
( x -2)³ +(3)³ = 0
( x -2+ 3){ (x -2)² + (3)² - 3(x -2) } = 0
(x +1)( x² -4x + 4 +9 - 3x +6) = 0
(x +1)( x² -7x +19) = 0
x + 1= 0 and x² - 7x + 19 = 0
x = -1 and x = { 7±√27i)/2
x = 4/2 + ( 3 ±3√3i)/2
= 2 + 3( 1± √3i)/2
hence,
x = -1 , 2 +3 w , 2 +3 w²
option ( B) is answer
abhi178:
i hope its help you
Similar questions