Math, asked by Anonymous, 10 months ago

(◍•ᴗ•◍)❤ Please solve this (◍•ᴗ•◍)❤​

Attachments:

Answers

Answered by BrainlyPopularman
13

Question :

The pth , qth and rth terms of A.P. are a , b and c respectively. Prove that a(q - r) + b(r - p) + c(p - q) = 0.

ANSWER :

GIVEN :

Pth term = a

qth term = b

rth term = c

TO FIND :

Prove that a(q - r) + b(r - p) + c(p - q) = 0.

SOLUTION :

• We know that nth term of A.P. is –

 \\ \longrightarrow \large { \boxed{ \rm \: T_{n} = a_{1} + (n - 1)d}} \\

Here –

  \\ \rm \:  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  a_{1} \:  =  \: first \:  \: term \:  \:of \:  \: A.P.

  \\ \rm \:  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  d\:  =  \: common \:  \: difference \:  \:of \:  \: A.P.

  \\ \rm \:  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:  n \:  =  \: total \:  \: number \:  \: of \:  \: terms \:  \:in \:  \: A.P.

  \\ \rm \:  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \:   T_{n} \:  =  \: n \th \:  \: term \:  \: of \ \:  \: A.P.

• According to the first condition –

 \\ \longrightarrow \rm \: T_{p} = a  \\

 \\ \implies \rm \: a_{1} + (p- 1)d = a  ---eq.(1)\\

• According to the second condition –

 \\ \longrightarrow \rm \: T_{q} = b  \\

 \\ \implies \rm \: a_{1} + (q- 1)d = b ---eq.(2)\\

• According to the third condition –

 \\ \longrightarrow \rm \: T_{r} = c  \\

 \\ \implies \rm \: a_{1} + (r- 1)d = c ---eq.(3)\\

• Now Let's take L.H.S.

 \\  = \rm \: a(q - r) + b(r - p) + c(p - q)\\

• Now put the values of a , b and c from eq.(1) , eq.(2) and eq.(3) –

 \\  = \rm \:( a_{1} + (p- 1)d)(q - r) + (a_{1} + (q- 1)d)(r - p) +( a_{1} + (r- 1)d)(p - q)\\

 \\  = \rm \  ( a_{1} + p.d- d)(q - r) + (a_{1} + q.d- d)(r - p) +( a_{1} + rd- d)(p - q)\\

 \\  = \rm \   a_{1} .q+ p.d.q- d.q - a_{1} .r - p.d.r + d.r +a_{1}.r + q.d.r- d.r - a_{1}.p - q.d.p +  d.r.p +a_{1} .p+ r.d.p- d.p -a_{1} .q -  r.d.q +  d.q\\

• All term are cancelled , so –

 \\  = \rm \   0\\

 \\  = \rm \   R.H.S.   \:  \:  \:  \:  \:  \:  \:  \:  \:     (Hence  \:  \:  \:  proved)\\

 \\ \rule{220}{2} \\

Answered by Anonymous
11

 \large\bf\underline{Question:-}

The pth ,qth and rth terms of AP are a,b and c respectively.

then prove that a(q-r) +b(r-p)+c(p-q) = 0

 \large\bf\underline{Given:-}

  • the pth , qth and rth terms of an AP a,b and c.

 \large\bf\underline {To \: prove:-}

  • a(q-r) +b(r-p)+c(p-q) = 0

 \huge\bf\underline{Solution:-}

Let x be the first term and d be the common difference of the given AP.

we know that ,

 \bf \: a_n = a+(n-1)d

 \rm \: T_P = x+(p-1)d \\ </p><p></p><p> \rm \: T_q = x +(q-1)d \\ </p><p></p><p> \rm \: T_r = x +(r-1)d  \: \\

Then,

  • x + (p-1)d = a ........(i)
  • x + (q-1)d = b ......(ii)
  • x + (r-1)d = c .......(iii)

On Multiplying :-

eq.(i) by (q-r) , eq. (ii) by( r-p) and eq.(iii) by (p-q)

we get,

 \rm \: a(q-r) +b(r-p)+c(p-q)

\small\rm\:[a(q-r)+(q-r)(p-q)d]\\\:\rm\:+[a(r-p)+(r-p)(q-1)d]\\\:\rm\:+a(p-q)+(p-q)(r-1)d]\\

\small\rm\:=a(q-r)+a(r-p)+a(p-q)+(q-r)(p-1)d\\\:\rm\:+(r-p)(q-1)d(p-q)(r-1)d\\

\small\rm\:=a[q-r+r-p+p-q]+d[(q-r)(p-1)+(r-p)(q-1)+(p-q)(r-1)]\\

\small\rm\:=a[0+0+0]+d[qp-q-rp+rq-r-pq+p+pr-p-qr+q]\\

\small\rm\:=0+d(o)\\

\small\rm\:=0

LHS = RHS

Hence, proved

Similar questions