Please solve this!!!
Attachments:
Answers
Answered by
3
Let the first term be a and d be the common difference.
Given that a = 6 and s10 = 195.
We know that sum of n terms of an AP sn = n/2(2a + (n - 1) * d)
s10 = 10/2(2 * 6 + (10 - 1) * d)
195 = 5(12 + 9d)
195 = 60 + 45d
195 - 60 = 45d
135 = 45d
d = 3.
Now, sn + 3/sn-8 = (n + 3)/2(2a + (n + 3 - 1) * d/ (n - 8)/2(2a + (n - 8 - 1) * d)
= (n + 3)/2(2a + (n + 2) * d) / (n - 8)/2(2a + (n - 9) * d)
= (n + 3)/2(2(6) + (n + 2) * 3)/(n - 8)/2(2(6) + (n - 9) * 3)
= (n + 3)/2(12 + 3n + 6)/(n - 8)/2(12 + 3n - 27)
= (n + 3)(18 + 3n)/(n - 8)(3n - 15)
= (n + 3)(18 + 3n)/3(n - 8)(n - 5)
= 18n + 3n^2 + 54 + 9n/3(n-8)(n-5)
= 3n^2 + 27n + 54/3(n - 8)(n - 5)
= 3(n + 6)(n + 3)/3(n - 8)(n - 5)
= (n + 6)(n + 3)/(n - 8)(n - 5)
Sorry. I am not getting this answer.
Given that a = 6 and s10 = 195.
We know that sum of n terms of an AP sn = n/2(2a + (n - 1) * d)
s10 = 10/2(2 * 6 + (10 - 1) * d)
195 = 5(12 + 9d)
195 = 60 + 45d
195 - 60 = 45d
135 = 45d
d = 3.
Now, sn + 3/sn-8 = (n + 3)/2(2a + (n + 3 - 1) * d/ (n - 8)/2(2a + (n - 8 - 1) * d)
= (n + 3)/2(2a + (n + 2) * d) / (n - 8)/2(2a + (n - 9) * d)
= (n + 3)/2(2(6) + (n + 2) * 3)/(n - 8)/2(2(6) + (n - 9) * 3)
= (n + 3)/2(12 + 3n + 6)/(n - 8)/2(12 + 3n - 27)
= (n + 3)(18 + 3n)/(n - 8)(3n - 15)
= (n + 3)(18 + 3n)/3(n - 8)(n - 5)
= 18n + 3n^2 + 54 + 9n/3(n-8)(n-5)
= 3n^2 + 27n + 54/3(n - 8)(n - 5)
= 3(n + 6)(n + 3)/3(n - 8)(n - 5)
= (n + 6)(n + 3)/(n - 8)(n - 5)
Sorry. I am not getting this answer.
Similar questions