Math, asked by harshlodam0, 4 months ago

Please solve this and ignore if you don't know the answer or I will report.​

Attachments:

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given:

 \sf\leadsto \dfrac{ {a}^{2n - 3}  \times ( {a}^{2})^{n + 1}  }{ ({a}^{4})^{ - 3} }  =  ({a}^{3})^{3}  \div  ({a}^{6})^{ - 3}

To find:

  • The value of n.

Solution:

We have,

 \sf \implies\dfrac{ {a}^{2n - 3}  \times ( {a}^{2})^{n + 1}  }{ ({a}^{4})^{ - 3} }  =  ({a}^{3})^{3}  \div  ({a}^{6})^{ - 3}

 \sf \implies\dfrac{ {a}^{2n - 3}  \times{a}^{2(n + 1)}}{{a}^{ - 12}}  =  ({a}^{9}) \div  ({a}^{ - 18})  \:  \:   \blue{\bigg( ({a}^{m})^{n}  =  {a}^{mn} \bigg) }

 \sf \implies\dfrac{ {a}^{2n - 3 + 2n + 2} }{{a}^{ - 12}}  =  ({a}^{9}) \div  ({a}^{ - 18})  \:  \:   \blue{\bigg( {a}^{m}\times {a}^{n}  =  {a}^{m + n} \bigg) }

 \sf \implies\dfrac{ {a}^{4n - 1} }{{a}^{ - 12}}  =  ({a}^{9}) \div  ({a}^{ - 18})

 \sf \implies\dfrac{ {a}^{4n - 1} }{{a}^{ - 12}}  =  ({a}^{9})  \times  \dfrac{1}{ ({a}^{ - 18}) }

 \sf \implies{a}^{4n - 1}  \times  {a}^{12}  =  ({a}^{9} \times  {a}^{18} ) \:  \:  \:  \blue{ \bigg( {a}^{n}  =  \dfrac{1}{ {a}^{ - n} }  \bigg)}

 \sf \implies{a}^{4n - 1 + 12} =  {a}^{9 + 18} \:  \:  \:  \blue{ \bigg(  {a}^{m} \times  {a}^{n}  =   {a}^{m + n}   \bigg)}

 \sf \implies{a}^{4n  + 11} =  {a}^{27}

Comparing base, we get,

 \sf \implies 4n  + 11 =   27

 \sf \implies 4n = 27 - 11

 \sf \implies 4n = 16

 \sf \implies n =4

Hence, the value of n is 4.

Answer:

  • The value of n is 4.
Similar questions