please solve this and please be quick
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
L.H.S:
=> 2/Cos²θ - 1/Cos⁴θ - 2/Sin²θ + 1/Sin⁴θ
//Take LCM of Cos items and SIn items seperately.
=> 2Cos²θ - 1 / Cos⁴θ + 1 - 2Sin²θ/Sin⁴θ
//We know that Cos2θ = 2Cos²θ - 1 = 1 - 2Sin²θ = Cos²θ - Sin²θ
=> Cos²θ - Sin²θ/Cos⁴θ + Cos²θ - Sin²θ/Sin⁴θ
=> (Cos²θ - Sin²θ) (1/Cos⁴θ + 1/Sin⁴θ)
=> (Cos²θ - Sin²θ) (Sin⁴θ + Cos⁴θ)/ Sin⁴θCos⁴θ
=> (Cos²θ - Sin²θ)(Sin⁴θ + Cos⁴θ)/ Sin⁴θCos⁴θ
//We know that Cos²θ + Sin²θ = 1
=> (Cos²θ - Sin²θ)(Cos²θ + Sin²θ)(Sin⁴θ + Cos⁴θ) / Sin⁴θCos⁴θ
=> (Cos⁴θ + Sin⁴θ)( Cos⁴θ - Sin⁴θ)/Sin⁴θCos⁴θ
//We know that (a+b)(a-b) = a² - b²
=>(Cos⁴θ)² - (Sin⁴θ)² / Sin⁴θCos⁴θ
=> Cos⁴θ/Sin⁴θ - Sin⁴θ/Cos⁴θ
=> Cot⁴θ - Tan⁴θ
= R.H.S
Hence proved.
Answered by
2
Attachments:
Similar questions