Math, asked by angeiiartz3, 9 months ago

please solve this asap :(​

Attachments:

Answers

Answered by sanjaygudhainiya
0

Answer:

3rd one

can't solve but i can just ....

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • 1)  \frac{4} {5}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

⇒\cos(2 \tan^{ - 1} ( \frac{1}{5} )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos( \tan^{ - 1} ( \frac{ 2.\frac{1}{5} }{1 -  { (\frac{1}{5} )}^{2} } )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos( \tan^{ - 1} ( \frac{2 \times 5}{25 - 1} )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos(\tan^{ - 1} ( \frac{10}{24} )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos(\tan^{ - 1} ( \frac{5}{12} )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos(\cos^{ - 1} ( \frac{12}{ \sqrt{ {5}^{2} +  {12}^{2}  } } )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos(\cos^{ - 1} ( \frac{12}{13} )+  \cos^{ - 1} ( { \frac{63}{65} } )  )

⇒\cos(\cos^{ - 1} ( \frac{12}{13} ))cos( \cos^{ - 1} ( { \frac{63}{65} } ))  - \sin(\cos^{ - 1} ( \frac{12}{13} ))sin( \cos^{ - 1} ( { \frac{63}{65} } ))

⇒ \frac{12}{13}.\frac{63}{65}  -   \sqrt{1 -  {( \frac{12}{13} )}^{2} }\sqrt{1 -  {( \frac{63}{65} )}^{2} }

⇒ \frac{12}{13}.\frac{63}{65}  -   \sqrt{( \frac{13^{2}  - 12^{2} }{13^{2} } )}\sqrt{(\frac{65^{2} -  63^{2} }{65^{2} } )}

⇒ \frac{12}{13}.\frac{63}{65}  -  \sqrt{ \frac{25}{13^{2} } } \sqrt{ \frac{256}{65^{2} } }

⇒ \frac{12}{13}.\frac{63}{65}  -  \frac{5}{13}.\frac{16}{65}

⇒ \frac{12 \times 63 - 5 \times 16}{13 \times 65}  =  \frac{676}{13 \times 65}

⇒ \frac{676}{13 \times 65}  =  \frac{13 \times 13 \times 4}{13  \times 13 \times 5}

⇒ \frac{4}{5}

Similar questions