Math, asked by abhijeetvshkrma, 3 months ago

Please solve this ASAP ​

Attachments:

Answers

Answered by PᴀʀᴛʜTʀɪᴘᴀᴛʜɪ
10

The Correct and Right Answer is in The Above Attachment....

Hope It Helps...

Attachments:
Answered by Flaunt
115

Question

\sf =  > \displaystyle \int \dfrac{ {sin}^{8}x -  {cos}^{8}  x}{1 - 2 {sin}^{2} x {cos}^{2} x} dx

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Identity used here :-

 \sf\boxed{{x}^{2}  -  {y}^{2}  = (x - y)(x + y)}

 \sf=  >  {sin}^{8} x -  {cos}^{8} x  =  { {(sin}^{4}x) }^{2}  -  { {(cos}^{4}x) }^{2}

 \sf=  >(  {sin}^{4} x -  {cos}^{4}x)( {sin}^{4} x +  {cos}^{4} x)

 \sf=  > ( {sin}^{2} x -  {cos}^{2} x)( {sin}^{2} x +  {cos}^{2} x)

\bigg[  { {\bigg(sin}^{2}x\bigg) }^{2}  +  {\bigg( {cos}^{2}x\bigg )}^{2}  + 2 {cos}^{4} x {sin}^{2} x - 2 {cos}^{2} x {sin}^{2} x\bigg]

 \sf=  >  {sin}^{2} x -  {cos}^{2} x(1)\bigg[  {( {sin}^{2}x +  {cos}^{2}x)  }^{2} - 2 {cos}^{2}  x {sin}^{2} x\bigg]

\sf =  {sin}^{2} x -  {cos}^{2} x(1 - 2 {cos}^{2} x {sin}^{2} x)

 \sf{sin}^{8} x -  {cos}^{8} x =  {sin}^{2} x -  {cos}^{2} x(1 - 2 {cos}^{2}x {sin}^{2}  x)

Dividing both sides by 1-2sin²xcos²x

 \sf=  >  - \bigg( {cos}^{2} x -  {sin}^{2} x\bigg)

 \sf=  > \displaystyle \int -  {cos}^{2} xdx

\sf =  >  \displaystyle-  \int \: cos2xdx

\sf\bold{\red{ =  -  \dfrac{sin2x}{2}  + c}}

Similar questions