Math, asked by JasonJacob, 1 year ago

Please solve this CBSE class 10 Maths :-)​

Attachments:

Answers

Answered by Swarup1998
12
\underline{\underline{\textsf{Solution :}}}

\textsf{Now,}\:\: \frac{\textsf{1}}{\textsf{(x - 1)(x - 2)}}+\frac{\textsf{1}}{\textsf{(x - 2)(x - 3)}}=\frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{(x - 1) - (x - 2)}}{\textsf{(x - 1)(x - 2)}}+\frac{\textsf{(x - 2) - (x - 3)}}{\textsf{(x - 2)(x - 3)}}=\frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{1}}{\textsf{x - 2}} - \frac{\textsf{1}}{\textsf{x - 1}} + \frac{\textsf{1}}{\textsf{x - 3}} - \frac{\textsf{1}}{\textsf{x - 2}} = \frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{1}}{\textsf{x - 3}} - \frac{\textsf{1}}{\textsf{x - 1}} = \frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{(x - 1) - (x - 3)}}{\textsf{(x - 3)(x - 1)}} = \frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{x - 1 - x + 3}}{{\textsf{x}}^{\textsf{2}}\textsf{- 4x + 3}} = \frac{\textsf{2}}{\textsf{3}}

\to \frac{\textsf{2}}{{\textsf{x}}^{\textsf{2}}\textsf{- 4x + 3}} = \frac{\textsf{2}}{\textsf{3}}

\to \textsf{2} ({\textsf{x}}^{\textsf{2}}\textsf{- 4x + 3)}= \textsf{3 ( 2 )}

\to \textsf{2}{\textsf{x}}^{\textsf{2}}\textsf{- 8x + 6 = 6}

\to \textsf{2}{\textsf{x}}^{\textsf{2}}\textsf{- 8x = 0}

\to {\textsf{x}}^{\textsf{2}} \textsf{- 4x = 0}

\to \textsf{x (x - 4) = 0}

\therefore \textsf{either x = 0 or, x - 4 = 0}

\underline{\textsf{i.e., x = 0, 4}}

\textsf{which is the required solution.}

JasonJacob: I didn't understand the first answer what you did...?
JasonJacob: means first two steps
Swarup1998: rearranged those terms to get 1
Swarup1998: (x-1) - (x-2) = x - 1 - x + 2 = 1
JasonJacob: can't we directly cross multiply it to get the answer..?
Swarup1998: sure we can but that will increase calculations...
JasonJacob: oh
Swarup1998: and it will also bring cubic term
JasonJacob: Hmmm understand
JasonJacob: thanks
Similar questions