please solve this class 9 question .
Prove that cos^2(A – 120°) + cos^2 A + cos^2(A + 120°) = 3/2
Answers
Answer:
cos22A+cos22(A+120∘)+cos22(A−120∘)=32cos22A+cos22(A+120∘)+cos22(A−120∘)=32
We know that
cos2A=1+cos2A2cos2A=1+cos2A2 ..............(i)
cos22(A+120∘)=1+cos(2A+240∘)2cos22(A+120∘)=1+cos(2A+240∘)2 ..............(ii)
And cos22(A−120∘)=1+cos(2A−240∘)2cos22(A−120∘)=1+cos(2A−240∘)2..............(iii)
Adding all these three equations,
cos22A+cos22(A+120∘)+cos22(A−120∘)cos22A+cos22(A+120∘)+cos22(A−120∘) = 32+1+cos2A2+1+cos(2A+240∘)2+1+cos(2A−240∘)232+1+cos2A2+1+cos(2A+240∘)2+1+cos(2A−240∘)2
= 3+1+cos2A+1+cos(2A+240∘)+1+cos(2A−240∘)23+1+cos2A+1+cos(2A+240∘)+1+cos(2A−240∘)2
= 3+3+cos2A+cos(2A+240∘)+cos(2A−240∘)23+3+cos2A+cos(2A+240∘)+cos(2A−240∘)2
= 3+3+cos2A+2cos2A.cos240∘23+3+cos2A+2cos2A.cos240∘2
= 3+3+cos2A−cos2A23+3+cos2A−cos2A2
= 6262
⇒⇒ cos22A+cos22(A+120∘)+cos22(A−120∘)=32