Math, asked by Anonymous, 8 months ago

Please solve this !!! (◍•ᴗ•◍)❤
Don't give irrevalant answers..​

Attachments:

Answers

Answered by BrainlyPopularman
19

Question :

A chord is drawn to a circle. The end points of the chord are (2, 3) and (8, 3). If the Length of the perpendicular from the centre to the chord is 4 units, find the centre of the chord and radius of the circle.

ANSWER :

The perpendicular from the centre of a circle to a chord bisect the chord.

• So that –

⇨ Length (AC) = Length (CB)

• Let the point c is (x,y)

  \\ \implies  { \bold{Length (AC) = Length (CB)}} \\

  \\ \implies  { \bold{ \sqrt{ {(x - 2) }^{2} +  {(y - 3)}^{2}  } = \sqrt{ {(x - 8)}^{2}  +  {(y - 3)}^{2} } }} \\

• Square on both sides –

  \\ \implies  { \bold{ { {(x - 2) }^{2} +  {(y - 3)}^{2}  } = { {(x - 8)}^{2}  +  {(y - 3)}^{2} } }} \\

  \\ \implies  { \bold{ { {(x - 2) }^{2}  } = { {(x - 8)}^{2}  }}} \\

• Now take square root on both sides –

  \\ \implies  { \bold{ { {(x - 2) }  } = { { \pm(x - 8)}  }}} \\

Take positive (+) sign :

  \\ \implies  { \bold{ { {x - 2 }  } = { {x - 8}  }}} \\

  \\ \implies  { \bold{ { { - 2 }  } = { { - 8} \:  \:  \:  \: (rejected)  }}} \\

Take negative (-) sign :

  \\ \implies  { \bold{ { {x - 2 }  } = {  - ({x - 8)}  }}} \\

  \\ \implies  { \bold{ { {x - 2 }  } = { { - x  +  8} \:  \ }}} \\

  \\ \implies  { \bold{ { {x  + x}  } = { { 2 +  8} \:  \ }}} \\

  \\ \implies  { \bold{ { {2x}  } = { { 10} \:  \ }}} \\

  \\ \implies  { \bold{ { {x}  } = { { 5} \:  \ }}} \\

• Here Y - coordinate is Fixed.

Hence , point c is (5 , 3).

Now Let's find Distance AC

  \\ \implies  { \bold{AC =  \sqrt{ {(5 - 2)}^{2} +  {(3 - 3)}^{2} } }} \\

  \\ \implies  { \bold{AC =  \sqrt{ {(3)}^{2} +  {(0)}^{2} } }} \\

  \\ \implies  { \bold{AC =  \sqrt{ 9} }} \\

  \\ \implies  { \bold{AC =  3 }} \\

  \\ \implies  { \bold{AC =  3  \:  \: unit}} \\

• Now Let's use pythagoras theorem in OAC

  \\ \implies  { \bold{AO {}^{2}  = AC {}^{2}  + OC {}^{2}   \:  \: }} \\

  \\ \implies  { \bold{AO {}^{2}  = {(3)}^{2}  +  {(4)}^{2}   \:  \: }} \\

  \\ \implies  { \bold{(AO ){}^{2}  = 9 +  16   \:  \: }} \\

  \\ \implies  { \bold{(AO ){}^{2}  = 25   \:  \: }} \\

  \\ \implies \large { \boxed{ \bold{AO(radius)   = 5   \:  \: unit}}} \\

Attachments:
Answered by tshantha86
2

Answer:

nihu sorry for answer...........

Similar questions