Math, asked by Brainly2004, 1 year ago

please solve this fast please

Attachments:

Answers

Answered by kajaldas5757Korakdas
0
One hundred seventy one plus forty five root fifteen
Answered by rajgraveiens
0

Answer: 126\sqrt{15}

Step-by-step explanation:

x = 4 + \sqrt{15} \\

1/x  =  1/(x = 4 - \sqrt{15})\\

By using rationalisation

1/x = 1/(4 + \sqrt{15}) * [(4 - \sqrt{15})/(4 - \sqrt{15})]\\ 1/x = (4 - \sqrt{15})/(4^{2}  - (\sqrt{15})^{2} )\\ 1/x= (4 - \sqrt{15})/(16 - 15 )\\ 1/x =  (4 - \sqrt{15})/1\\1/x =  (4 - \sqrt{15})

x^{2}  + (1/x)^{2}  = (x - 1/x)^{2}  + 2\\

                  = [4 + \sqrt{15}  - (4 - \sqrt{15})]^{2}  + 2\\

                  = [4 + \sqrt{15} - 4 + \sqrt{15}]^{2}  + 2

                  = (2\sqrt{15} )^{2}  + 2

                  = 60 + 2

                  = 62

Now,

x^{3} - (1/x)^{3}  = [x - (1/x)][x^{2} + (1/x)^{2} + x(1/x)]\\x^{3} - (1/x)^{3}  = [4+\sqrt{15}  - (4-\sqrt{15})][62 + 1]\\x^{3} - (1/x)^{3}  = [4+\sqrt{15}  - 4+\sqrt{15}][63]\\x^{3} - (1/x)^{3}  = [2\sqrt{15}][63]\\x^{3} - (1/x)^{3}  = [2\sqrt{15}][63]\\x^{3} - (1/x)^{3}  = 126\sqrt{15}\\

Similar questions